-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
122 lines (96 loc) · 3.61 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import torch
import torch.optim as optim
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import os
import sys
import time
import argparse
import datetime
from model import *
net = alexnet()
net = net.cuda()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
best_acc = 0
start_epoch = 0
transform_train = transforms.Compose([
transforms.Resize(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
criterion = nn.CrossEntropyLoss()
best_acc = 0
def train(epoch, optimizer):
print('\nEpoch: %d' % epoch)
net.train()
for epochs in range(epoch): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data[0].to(device), data[1].to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 100 == 0 :
print('[%d, %5d] loss: %.3f' %
(epochs + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
def test(epoch, optimizer):
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
acc = 100.*correct/total
print("Accuracy :",acc)
if acc > best_acc:
print('Saving..')
state = {
'net': net.state_dict(),
'acc': acc,
'epoch': epoch,
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, './checkpoint/ckpt.pth')
best_acc = acc
if __name__ == "__main__":
parser = argparse.ArgumentParser(description = "Pytorch Cifar10 alexnet")
parser.add_argument('--lr', default=0.001, type=float)
parser.add_argument('--epoch', default=10, type=float)
parser.add_argument('--momentum', default=0.9)
parser.add_argument("--decay", default=5e-4)
args = parser.parse_args()
net.to(device)
optimizer = optim.SGD(net.parameters(),
lr=args.lr, momentum=args.momentum, weight_decay=args.decay)
train(args.epoch, optimizer)
test(args.epoch, optimizer)