-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathutils.py
50 lines (40 loc) · 1.64 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from PIL import Image
import tensorflow as tf
import numpy as np
import io
def merge_axis(array, source_axis=0, target_axis=1):
array = np.moveaxis(array, source_axis, 0)
array = np.moveaxis(array, target_axis, 1)
array = np.concatenate(array)
array = np.moveaxis(array, 0, target_axis - 1)
return array
def batch_to_image_summary(batch):
stitched = merge_axis(batch, target_axis=2)
stitched = (255 * stitched).astype('uint8')
stitched = stitched[:, :, 0]
height, width = stitched.shape
image = Image.fromarray(stitched)
output = io.BytesIO()
image.save(output, format='PNG')
image_string = output.getvalue()
output.close()
return tf.Summary.Image(height=height,
width=width,
colorspace=1,
encoded_image_string=image_string)
class TensorboardAEImageCallback(tf.keras.callbacks.Callback):
# callback visualizes input images and images of 2 outputs on a single image
def __init__(self, tag, logdir):
super().__init__()
self.tag = tag
self.logdir = logdir
def on_epoch_end(self, epoch, logs={}):
inp_stack = self.validation_data[0][:3]
ae_out, wwae_out = self.model.predict(inp_stack)
summary_str = []
summary_str.append(tf.Summary.Value(tag=self.tag + '_input', image=batch_to_image_summary(inp_stack)))
summary_str.append(tf.Summary.Value(tag=self.tag + '_ae', image=batch_to_image_summary(ae_out)))
summary_str.append(tf.Summary.Value(tag=self.tag + '_wwae', image=batch_to_image_summary(wwae_out)))
writer = tf.summary.FileWriter(self.logdir)
writer.add_summary(tf.Summary(value=summary_str), epoch)
return