-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmodel.py
333 lines (281 loc) · 12.1 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import torch
from torch.autograd import Variable
from torch import nn
from transformers import BertForMaskedLM, DistilBertForMaskedLM, DistilBertModel, AutoModel
from transformers import AutoModelWithLMHead, AlbertModel, AlbertForMaskedLM
from transformers import AlbertForSequenceClassification
class BertPunc(nn.Module):
def __init__(self, segment_size, output_size, dropout):
super(BertPunc, self).__init__()
self.bert = BertForMaskedLM.from_pretrained('./models/')
self.bert_vocab_size = 30522
self.bn = nn.BatchNorm1d(segment_size*self.bert_vocab_size)
self.fc = nn.Linear(segment_size*self.bert_vocab_size, output_size)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
print(x.shape)
x = self.bert(x)[0]
print('x', type(x))
x = x.view(x.shape[0], -1)
x = self.fc(self.dropout(self.bn(x)))
return x
class DistillBertPunc(nn.Module):
def __init__(self, segment_size, output_size, dropout):
super(DistillBertPunc, self).__init__()
self.bert = DistilBertForMaskedLM.from_pretrained('./models/distillbert/')
self.bert_vocab_size = 30522
self.bn = nn.BatchNorm1d(segment_size*self.bert_vocab_size)
self.fc = nn.Linear(segment_size*self.bert_vocab_size, output_size)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
print(x.shape)
x = self.bert(x)[0]
print('x', type(x))
x = x.view(x.shape[0], -1)
x = self.fc(self.dropout(self.bn(x)))
return x
class ALBertPunc(nn.Module):
def __init__(self, segment_size, output_size, dropout):
super(ALBertPunc, self).__init__()
self.bert = AutoModelWithLMHead.from_pretrained('./models/albert_en/')
self.bert_vocab_size = 30000
# 去掉一些批标准化部分,减少计算量
# self.bn = nn.BatchNorm1d(segment_size*self.bert_vocab_size)
self.fc = nn.Linear(segment_size*self.bert_vocab_size, output_size)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
# print(x.shape)
x = self.bert(x)[0]
# print('x', type(x))
x = x.view(x.shape[0], -1)
x = self.fc(self.dropout(x))
return x
class BartPunc(nn.Module):
def __init__(self, segment_size, output_size, dropout):
super(BartPunc, self).__init__()
self.bert = AutoModelWithLMHead.from_pretrained('./models/bart_tiny/')
self.bert_vocab_size = 50265
self.bn = nn.BatchNorm1d(segment_size*self.bert_vocab_size)
self.fc = nn.Linear(segment_size*self.bert_vocab_size, output_size)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
# print(x.shape)
x = self.bert(x)[0]
# print('x', type(x))
x = x.view(x.shape[0], -1)
x = self.fc(self.dropout(self.bn(x)))
return x
class ALBertSmallPunc(nn.Module):
def __init__(self, segment_size, output_size, dropout, vocab_size):
super(ALBertSmallPunc, self).__init__()
self.bert = AlbertModel.from_pretrained('./models/albert_chinese_small/')
# self.bert_vocab_size = vocab_size
# self.bn = nn.BatchNorm1d(segment_size*self.bert_vocab_size)
# self.fc = nn.Linear(segment_size*self.bert_vocab_size, output_size)
# 使用bert中间层hidden_state 384
self.fc = nn.Linear(segment_size*384, output_size)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
# 修改后
x = self.bert(x)[0]
# 原始版
# x = self.bert(x)
# l = len(x)
# for i in range(l):
# print('{} shape:'.format(i), x[i].shape)
# print('x', type(x))
x = x.view(x.shape[0], -1)
# x = self.fc(self.dropout(self.bn(x)))
x = self.fc(self.dropout(x))
return x
class BertDistillHiddenPunc(nn.Module):
def __init__(self, segment_size, output_size, dropout, vocab_size):
super(BertDistillHiddenPunc, self).__init__()
self.bert = AutoModel.from_pretrained('./models/bert_distill_chinese')
# self.bert_vocab_size = vocab_size
# self.bn = nn.BatchNorm1d(segment_size*self.bert_vocab_size)
# self.fc = nn.Linear(segment_size*self.bert_vocab_size, output_size)
# 使用distill_bert中间层hidden_state 768
self.fc = nn.Linear(segment_size*768, output_size)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
# 修改后
x = self.bert(x)[0]
# 原始版
# x = self.bert(x)
# l = len(x)
# for i in range(l):
# print('{} shape:'.format(i), x[i].shape)
# print('x', type(x))
x = x.view(x.shape[0], -1)
# x = self.fc(self.dropout(self.bn(x)))
x = self.fc(self.dropout(x))
return x
class ALBertSmallRNNPunc(nn.Module):
def __init__(self, segment_size, output_size, dropout, vocab_size):
super(ALBertSmallRNNPunc, self).__init__()
self.bert = AutoModel.from_pretrained('./models/albert_chinese_small/')
# self.bert_vocab_size = vocab_size
# self.bn = nn.BatchNorm1d(segment_size*self.bert_vocab_size)
# self.fc = nn.Linear(segment_size*self.bert_vocab_size, output_size)
# 批标准化
self.bn = nn.BatchNorm1d(segment_size*384)
self.gru = nn.GRU(384, 384, 2, bidirectional=True, batch_first=True)
# NOTE rnn_hidden*2 使用bert中间层hidden_state 384
self.fc = nn.Linear(segment_size*384*2, output_size)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
# 修改后
x = self.bert(x)[0]
# 原始版
# x = self.bert(x)
shape1 = x.shape[1]
shape2 = x.shape[2]
x = x.view(x.shape[0], -1)
x = self.bn(x)
x = x.view(-1, shape1, shape2)
# GRU*************************************
# init_GRU_hidden
def init_gru_hidden(batch_size):
# when NOT bidirection (layer, B, H)
h = Variable(torch.zeros(self.gru.num_layers*2, batch_size, self.gru.hidden_size))
# h for storing hidden layer weight
return h
hidden = init_gru_hidden(x.shape[0])
x, hidden = self.gru(x, hidden)
x = x.contiguous()
# ***************************************
# l = len(x)
# for i in range(l):
# print('{} shape:'.format(i), x[i].shape)
# print('x', type(x))
# print('shape', x.shape)
x = x.view(x.shape[0], -1)
# x = self.fc(self.dropout(self.bn(x)))
x = self.fc(self.dropout(x))
return x
class ALBertSmallRNNnewLinearPunc(nn.Module):
def __init__(self, segment_size, output_size, dropout, vocab_size):
super(ALBertSmallRNNnewLinearPunc, self).__init__()
self.bert = AutoModel.from_pretrained('./models/albert_chinese_small/')
# self.bert_vocab_size = vocab_size
# self.bn = nn.BatchNorm1d(segment_size*self.bert_vocab_size)
# self.fc = nn.Linear(segment_size*self.bert_vocab_size, output_size)
# 批标准化
self.bn = nn.BatchNorm1d(segment_size*384)
self.gru = nn.GRU(384, 384, 2, bidirectional=True, batch_first=True)
# NOTE rnn_hidden*2 使用bert中间层hidden_state 384
self.fc = nn.Linear(384*2, output_size)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
# 修改后
x = self.bert(x)[0]
# 原始版
# x = self.bert(x)
shape1 = x.shape[1]
shape2 = x.shape[2]
x = x.view(x.shape[0], -1)
x = self.bn(x)
x = x.view(-1, shape1, shape2)
# GRU*************************************
# init_GRU_hidden
def init_gru_hidden(batch_size):
# when NOT bidirection (layer, B, H)
h = Variable(torch.zeros(self.gru.num_layers*2, batch_size, self.gru.hidden_size))
# h for storing hidden layer weight
return h
hidden = init_gru_hidden(x.shape[0])
x, hidden = self.gru(x, hidden)
x = x.contiguous()
# ***************************************
# l = len(x)
# for i in range(l):
# print('{} shape:'.format(i), x[i].shape)
# print('x', type(x))
# print('shape', x.shape)
shape1 = x.shape[0]
shape2 = x.shape[1]
x = x.view(-1, x.shape[2])
# x = self.fc(self.dropout(self.bn(x)))
x = self.fc(self.dropout(x))
# 变回batch_size第一维
x = x.view(shape1, -1)
return x
# NOTE
class ALBertSmallDenseHiddenPunc(nn.Module):
def __init__(self, segment_size, output_size, dropout, vocab_size):
super(ALBertSmallDenseHiddenPunc, self).__init__()
self.bert = AutoModelWithLMHead.from_pretrained('./models/albert_chinese_small/')
# self.bert_vocab_size = vocab_size
# self.bn = nn.BatchNorm1d(segment_size*self.bert_vocab_size)
# self.fc = nn.Linear(segment_size*self.bert_vocab_size, output_size)
self.albert = self.bert.albert
self.dense = self.bert.predictions.dense
# 批标准化
self.bn = nn.BatchNorm1d(segment_size*128)
# NOTE rnn_hidden*2 使用bert中间层hidden_state 384
self.fc = nn.Linear(segment_size*128, output_size)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
# 修改后
# [B, S, H]
x = self.albert(x)[0]
x = self.dense(x)
# 原始版
# x = self.bert(x)
shape1 = x.shape[1]
shape2 = x.shape[2]
print('******', shape1, shape2)
x = x.view(x.shape[0], -1)
x = self.bn(x)
x = x.view(-1, shape1, shape2)
x = x.view(x.shape[0], -1)
# x = self.fc(self.dropout(self.bn(x)))
x = self.fc(self.dropout(x))
return x
class ALBertSmallDenseRnnPunc(nn.Module):
def __init__(self, segment_size, output_size, dropout, vocab_size):
super(ALBertSmallDenseRnnPunc, self).__init__()
self.bert = AutoModelWithLMHead.from_pretrained('./models/albert_chinese_small/')
# self.bert_vocab_size = vocab_size
# self.bn = nn.BatchNorm1d(segment_size*self.bert_vocab_size)
# self.fc = nn.Linear(segment_size*self.bert_vocab_size, output_size)
self.albert = self.bert.albert
self.dense = self.bert.predictions.dense
# 批标准化
self.bn = nn.BatchNorm1d(segment_size*128)
# NOTE rnn_hidden*2 使用bert中间层hidden_state 384
# self.gru = nn.GRU(128, 128, 2, bidirectional=True, batch_first=True)
self.gru = nn.GRU(128, 128, 2, bidirectional=False, batch_first=True)
self.fc = nn.Linear(segment_size*128, output_size)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
# 修改后
# [B, S, H]
x = self.albert(x)[0]
x = self.dense(x)
# 原始版
# x = self.bert(x)
shape1 = x.shape[1]
shape2 = x.shape[2]
print('******', shape1, shape2)
x = x.view(x.shape[0], -1)
x = self.bn(x)
x = x.view(-1, shape1, shape2)
# GRU*************************************
# init_GRU_hidden
def init_gru_hidden(batch_size):
# when NOT bidirection (layer, B, H)
# 1、双向
# h = Variable(torch.zeros(self.gru.num_layers*2, batch_size, self.gru.hidden_size))
# 2、单向
h = Variable(torch.zeros(self.gru.num_layers, batch_size, self.gru.hidden_size))
# h for storing hidden layer weight
return h
hidden = init_gru_hidden(x.shape[0])
x, hidden = self.gru(x, hidden)
x = x.contiguous()
x = x.view(x.shape[0], -1)
# x = self.fc(self.dropout(self.bn(x)))
x = self.fc(self.dropout(x))
return x