-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
646 lines (575 loc) · 24.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
import torch
import os
import pandas as pd
import math
import numpy as np
import dendropy
from Bio import SeqIO
from torch.autograd import Function
import geoopt.manifolds.poincare.math as pmath
import geoopt
import time
def get_seq_length(args):
backbone_seq_file = args.backbone_seq_file
backbone_tree_file = args.backbone_tree_file
seq = SeqIO.to_dict(SeqIO.parse(backbone_seq_file, "fasta"))
args.sequence_length = len(list(seq.values())[0])
tree = dendropy.Tree.get(path=backbone_tree_file, schema='newick')
num_nodes = len(tree.leaf_nodes())
if args.embedding_size == -1:
args.embedding_size = 2 ** math.floor(math.log2(10 * num_nodes ** (1 / 2)))
def distance_portion(nodes1, nodes2, mode):
if len(nodes1.shape) == 1:
nodes1 = nodes1.unsqueeze(0)
if len(nodes2.shape) == 1:
nodes2 = nodes2.unsqueeze(0)
n1 = len(nodes1)
n2 = len(nodes2)
nodes1 = nodes1.view(n1, 1, -1)
nodes2 = nodes2.view(1, n2, -1)
if mode == 'ms':
return torch.sum((nodes1 - nodes2) ** 2, dim=-1)
elif mode == 'L2':
# breakpoint()
return (torch.sum((nodes1 - nodes2) ** 2, dim=-1) + 1e-6).sqrt()
elif mode == 'L1':
return torch.sum(abs(nodes1 - nodes2), dim=-1)
elif mode == 'cosine':
return 1 - torch.nn.functional.cosine_similarity(nodes1, nodes2, dim=-1)
elif mode == 'tan':
cosine = torch.nn.functional.cosine_similarity(nodes1, nodes2, dim=-1)
return (1 - cosine ** 2) / (cosine + 1e-9)
elif mode == 'hyperbolic':
nodes1 = nodes1.squeeze(1)
nodes2 = nodes2.squeeze(0)
# breakpoint()
# nodes1 = nodes1 / (nodes1.norm(-1, keepdim=True) / (1 - 1e-4))
# nodes2 = nodes2 / (nodes2.norm(-1, keepdim=True) / (1 - 1e-4))
# return hyperbolic_dist(nodes1, nodes2)
# ms_x = (nodes1 ** 2).sum(-1)
# ms_y = (nodes2 ** 2).sum(-1)
# d = - ((1 + ms_x)*(1 + ms_y)).sqrt() + (nodes1 * nodes2).sum(-1)
# d = torch.acosh(-d + 1e-15)
# return d
return hyp_dist(nodes1, nodes2)
def project_hyperbolic(x):
N, d = x.shape[0], x.shape[1]
hnorm_x = torch.norm(x, dim=1, p=2, keepdim=True)
s1 = torch.cosh(hnorm_x)
s2 = torch.div(torch.sinh(hnorm_x), hnorm_x)
e = torch.zeros(N, d + 1).to(x.device)
e[:, 0] = 1
zero_col = torch.zeros(N, 1).to(x.device)
z = torch.cat((zero_col, x), 1)
z = torch.mul(s1, e) + torch.mul(s2, z) # hyperbolic embeddings
return z
def hyp_dist(embeddings1, embeddings2=None):
if embeddings2 is None:
x1 = x2 = project_hyperbolic(embeddings1)
else:
x1, x2 = project_hyperbolic(embeddings1), project_hyperbolic(embeddings2)
d = x1.shape[1] - 1
H = torch.eye(d + 1, d + 1).to(x1.device)
H[0, 0] = -1
N1, N2 = x1.shape[0], x2.shape[0]
G = torch.matmul(torch.matmul(x1, H), torch.transpose(x2, 0, 1))
G[G >= -1] = -1
return torch.acosh(-G)
def hyp_dist_tmp(embeddings, formula, return_coord=True):
# N = embeddings.weight.size()[0]
# x = embeddings( torch.arange(0, N) )
# D = torch.cdist(x, x, p = 2)
# D = torch.pow(D, 2)
# print(embeddings.weight)
# norm_x = 1-torch.sum(x**2, dim=-1, keepdim=True)
# D = torch.div(D, norm_x)
# D = torch.transpose(D, 0, 1)
# D = torch.div(D, norm_x)
# D = D[torch.triu(torch.ones(N,N),diagonal = 1) == 1]
# D = torch.acosh(1+2*D)
# breakpoint()
N = embeddings.size()[0]
d = embeddings.size()[1]
x = embeddings
hnorm_x = torch.norm(x, dim=1, p=2, keepdim=True)
s1 = torch.cosh(hnorm_x)
s2 = torch.div(torch.sinh(hnorm_x), hnorm_x)
e = torch.zeros(N, d + 1).to(embeddings.device)
e[:, 0] = 1
H = torch.eye(d + 1, d + 1).to(embeddings.device)
H[0, 0] = -1
zero_col = torch.zeros(N, 1).to(embeddings.device)
z = torch.cat((zero_col, x), 1)
z = torch.mul(s1, e) + torch.mul(s2, z) # hyperbolic embeddings
G = torch.matmul(torch.matmul(z, H), torch.transpose(z, 0, 1))
# G = G[torch.triu(torch.ones(N, N), diagonal=1) == 1]
# G = G - 1e-5
# tmp = G[torch.triu(torch.ones(N, N), diagonal=1)==1]
# print((tmp >= -1).sum() / (N * N - N))
if formula == 1:
G[G >= -1] = -1 # log this
return torch.acosh(-G), (G[np.triu(np.ones((N, N)), 1) == 1] >= -1).sum() / (N-1)**2
else:
return -G - 1, (G[np.triu(np.ones((N, N)), 1) == 1] >= -1).sum() / (N-1)**2
def loss(D, embeddings, lr, scale, formula): # loss(self, triple_ids, similarities): # commented by Puoya
"""Computes the HypHC loss.
Args:
triple_ids: B x 3 tensor with triple ids
similarities: B x 3 tensor with pairwise similarities for triples
[s12, s13, s23]
"""
# commented by Puoya
# e1 = self.embeddings(triple_ids[:, 0])
# e2 = self.embeddings(triple_ids[:, 1])
# e3 = self.embeddings(triple_ids[:, 2])
# e1 = self.normalize_embeddings(e1)
# e2 = self.normalize_embeddings(e2)
# e3 = self.normalize_embeddings(e3)
# d_12 = hyp_lca(e1, e2, return_coord=False)
# d_13 = hyp_lca(e1, e3, return_coord=False)
# d_23 = hyp_lca(e2, e3, return_coord=False)
# lca_norm = torch.cat([d_12, d_13, d_23], dim=-1)
# weights = torch.softmax(lca_norm / self.temperature, dim=-1)
# w_ord = torch.sum(similarities * weights, dim=-1, keepdim=True)
# total = torch.sum(similarities, dim=-1, keepdim=True) - w_ord
# return torch.mean(total)
N = D.shape[0]
distances, num_one = hyp_dist_tmp(embeddings, formula)
distances = distances[np.triu(np.ones((N, N)), 1) == 1]
# distances = euc_dist(self.embeddings)
D_vec = D[np.triu(np.ones((N, N)), 1) == 1]
D_vec = torch.tensor(D_vec)
if formula == 2:
D_vec = torch.cosh(D_vec * 1 / scale) - 1
r = 1
# r = 0.39073709165622195/5.873781526199998
# print(flag)
# if flag:
if formula == 1:
cost = torch.sqrt(torch.mean(torch.pow(torch.div(scale * r * distances, D_vec + 1e-12) - 1, 2)))
# cost = torch.mean(torch.pow(torch.div(scale * r * distances, D_vec + 1e-12) - 1, 2))
#divd_sqrt = (scale * r * distances/D_vec) ** (1/2)
#cost = torch.mean(D_vec**(-3/2) * ((divd_sqrt - 1) ** 2)).sqrt()
# weight = 1 / (D_vec ** 2)
# dev = ((scale * r * distances)**0.5 - D_vec**0.5)**2
# cost = torch.mean(weight * dev)
else:
cost = torch.sqrt(torch.mean(torch.pow(torch.div(distances, D_vec) - 1, 2)))
a = torch.mean(torch.div(r * distances, D_vec+1e-12) + 10 ** (-10))
b = torch.mean(torch.pow(torch.div(r * distances, D_vec+1e-12), 2) + 10 ** (-10))
scale = (1 - lr) * scale + lr * (a.item() / b.item())
# print(flag)
# print(scale)
# cost = torch.sqrt(torch.mean( torch.pow( torch.div(distances, D_vec)-1, 2) ) )
# cost = torch.sqrt( torch.mean ( torch.pow(scale*distances- D_vec,2) ) )
# grad = torch.mean(torch.mul( torch.div(distances,D_vec), torch.div(scale*distances,D_vec)-1))
return cost, distances, scale, num_one
def jc_dist(seqs1_c, seqs2, names1, names2):
seqs1_tmp = np.zeros(seqs1_c.shape)
seqs2_tmp = np.zeros(seqs2.shape)
seqs1_tmp[seqs1_c == 'A'] = 0
seqs1_tmp[seqs1_c == 'C'] = 1
seqs1_tmp[seqs1_c == 'G'] = 2
seqs1_tmp[seqs1_c == 'T'] = 3
seqs1_tmp[seqs1_c == '-'] = 4
seqs2_tmp[seqs2 == 'A'] = 0
seqs2_tmp[seqs2 == 'C'] = 1
seqs2_tmp[seqs2 == 'G'] = 2
seqs2_tmp[seqs2 == 'T'] = 3
seqs2_tmp[seqs2 == '-'] = 4
seqs1_c = seqs1_tmp
seqs2 = seqs2_tmp
n2, l = seqs2.shape[0], seqs2.shape[-1]
seqs2 = seqs2.reshape(1, n2, -1)
hamming_dist = []
for i in range(math.ceil(len(seqs1_c) / 1000)):
seqs1 = seqs1_c[i * 1000: (i + 1) * 1000]
n1 = seqs1.shape[0]
seqs1 = seqs1.reshape(n1, 1, -1)
# breakpoint()
non_zero = np.logical_and(seqs1 != 4, seqs2 != 4)
hd = (seqs1 != seqs2) * non_zero
hd = np.count_nonzero(hd, axis=-1)
hamming_dist.append(hd / np.count_nonzero(non_zero, axis=-1))
hamming_dist = np.concatenate(hamming_dist, axis=0)
jc = - 3 / 4 * np.log(1 - 4 / 3 * hamming_dist)
jc_df = pd.DataFrame(dict(zip(names2, jc)))
jc_df.index = names1
return jc_df
def distance(nodes1, nodes2, mode):
# node1: query
# node2: backbone
dist = []
# np.save('query_emb.npy', np.array(nodes1.cpu()))
# np.save('backbone_emb.npy', np.array(nodes2.cpu()))
for i in range(math.ceil(len(nodes1) / 1000.0)):
dist.append(distance_portion(nodes1[i * 1000: (i + 1) * 1000], nodes2, mode))
return torch.cat(dist, dim=0)
def mse_loss(model_dist, true_dist, weighted_method, hyperbolic=False):
assert model_dist.shape == true_dist.shape
if weighted_method == 'ols':
return ((model_dist - true_dist) ** 2).mean()
elif weighted_method == 'fm':
weight = 1 / (true_dist + 1e-5) ** 2
return ((model_dist - true_dist) ** 2 * weight).mean()
elif weighted_method == 'be':
weight = 1 / (true_dist + 1e-5)
return ((model_dist - true_dist) ** 2 * weight).mean()
elif weighted_method == 'square_root_fm':
weight = 1 / (true_dist + 1e-5) ** 2
true_dist = torch.sqrt(true_dist)
# if hyperbolic:
# # breakpoint()
# true_dist = true_dist ** 2
# weight = 1 / (torch.acosh(true_dist) + 1e-4) ** 2
return ((model_dist - true_dist) ** 2 * weight).mean()
elif weighted_method == 'square_root_be':
true_dist = torch.sqrt(true_dist)
weight = 1 / (true_dist + 1e-5)
return ((model_dist - true_dist) ** 2 * weight).mean()
elif weighted_method == 'square_root_ols':
true_dist = torch.sqrt(true_dist)
weight = 1
return ((model_dist - true_dist) ** 2 * weight).mean()
elif weighted_method == 'square_root_sqrt':
true_dist = torch.sqrt(true_dist)
weight = 1 / (torch.sqrt(true_dist) + 1e-5)
return ((model_dist - true_dist) ** 2 * weight).mean()
elif weighted_method == 'square_root_four':
true_dist = torch.sqrt(true_dist)
weight = 1 / (true_dist + 1e-5) ** 4
return ((model_dist - true_dist) ** 2 * weight).mean()
def process_seq(self_seq, args, isbackbone, need_mask=False):
L = len(list(self_seq.values())[0])
names = list(self_seq.keys())
seqs = np.zeros([4, len(self_seq), L])
if need_mask:
mask = np.ones([1, len(self_seq), L])
raw_seqs = [np.array(self_seq[k].seq).reshape(1, -1) for k in self_seq]
raw_seqs = np.concatenate(raw_seqs, axis=0)
seqs[0][raw_seqs == 'A'] = 1
seqs[1][raw_seqs == 'C'] = 1
seqs[2][raw_seqs == 'G'] = 1
seqs[3][raw_seqs == 'T'] = 1
# R
idx = raw_seqs == 'R'
seqs[0][idx] = 1 / 2
seqs[2][idx] = 1 / 2
# Y
idx = raw_seqs == 'Y'
seqs[1][idx] = 1 / 2
seqs[3][idx] = 1 / 2
# S
idx = raw_seqs == 'S'
seqs[1][idx] = 1 / 2
seqs[2][idx] = 1 / 2
# W
idx = raw_seqs == 'W'
seqs[0][idx] = 1 / 2
seqs[3][idx] = 1 / 2
# K
idx = raw_seqs == 'K'
seqs[2][idx] = 1 / 2
seqs[3][idx] = 1 / 2
# M
idx = raw_seqs == 'M'
seqs[0][idx] = 1 / 2
seqs[1][idx] = 1 / 2
# B
idx = raw_seqs == 'B'
seqs[1][idx] = 1 / 3
seqs[2][idx] = 1 / 3
seqs[3][idx] = 1 / 3
# D
idx = raw_seqs == 'D'
seqs[0][idx] = 1 / 3
seqs[2][idx] = 1 / 3
seqs[3][idx] = 1 / 3
# H
idx = raw_seqs == 'H'
seqs[0][idx] = 1 / 3
seqs[1][idx] = 1 / 3
seqs[3][idx] = 1 / 3
# V
idx = raw_seqs == 'V'
seqs[0][idx] = 1 / 3
seqs[1][idx] = 1 / 3
seqs[2][idx] = 1 / 3
seqs[:, raw_seqs == '-'] = args.gap_encode
seqs[:, raw_seqs == 'N'] = args.gap_encode
if need_mask:
mask[:, raw_seqs == '-'] = 0
mask[:, raw_seqs == 'N'] = 0
mask = np.transpose(mask, axes=(1, 0, 2))
seqs = np.transpose(seqs, axes=(1, 0, 2))
if args.replicate_seq and (isbackbone or args.query_dist):
df = pd.DataFrame(columns=['seqs'])
df['seqs'] = df['seqs'].astype(object)
df['seqs'] = list(seqs)
df['names'] = names
df = df.set_index('names')
df = df.groupby(by=lambda x: x.split('_')[0]).sum(numeric_only=False)
seqs = np.concatenate([i.reshape(1, 4, -1) for i in df['seqs'].values])
seqs /= (seqs.sum(1, keepdims=True) + 1e-8)
comb_names = list(df.index)
if need_mask:
mask_df = pd.DataFrame(columns=['masks'])
mask_df['masks'] = mask_df['masks'].astype(object)
mask_df['masks'] = list(mask)
mask_df['names'] = names
mask_df = mask_df.set_index('names')
mask_df = mask_df.groupby(by=lambda x: x.split('_')[0]).sum(numeric_only=False)
mask_df = mask_df.loc[comb_names]
mask = np.concatenate([i.reshape(1, 1, -1) for i in mask_df['masks'].values])
names = comb_names
if need_mask:
return names, torch.from_numpy(seqs), torch.from_numpy(mask).bool()
# return names, torch.from_numpy(seqs)
return names, torch.from_numpy(seqs)
def get_embeddings(seqs, model, mask=None):
encodings = []
for i in range(math.ceil(len(seqs) / 2000.0)):
if not (mask is None):
encodings_tmp = model(seqs[i * 2000: (i + 1) * 2000].double(), mask=mask[i * 2000: (i + 1) * 2000]).detach()
else:
encodings_tmp = model(seqs[i * 2000: (i + 1) * 2000].double()).detach()
encodings.append(encodings_tmp)
encodings = torch.cat(encodings, dim=0)
return encodings
def save_depp_dist(model, args, recon_model=None):
t1 = time.time()
if model is not None:
model.eval()
args.replicate_seq = model.hparams.replicate_seq
args.distance_ratio = model.hparams.distance_ratio
args.gap_encode = model.hparams.gap_encode
args.jc_correct = model.hparams.jc_correct
args.distance_mode = model.hparams.distance_mode
elif recon_model is not None:
args.replicate_seq = recon_model.hparams.replicate_seq
args.distance_ratio = recon_model.hparams.distance_ratio
args.gap_encode = recon_model.hparams.gap_encode
args.jc_correct = recon_model.hparams.jc_correct
print('processing data...')
backbone_seq_file = args.backbone_seq_file
query_seq_file = args.query_seq_file
dis_file_root = os.path.join(args.outdir)
# args.distance_ratio = float(1.0 / float(args.embedding_size) / 10 * float(args.distance_alpha))
#args.replicate_seq = model.hparams.replicate_seq
print('jc_correct', args.jc_correct)
if args.jc_correct:
args.jc_ratio = model.hparams.jc_ratio
if not os.path.exists(dis_file_root):
os.makedirs(dis_file_root, exist_ok=True)
backbone_seq = SeqIO.to_dict(SeqIO.parse(backbone_seq_file, "fasta"))
query_seq = SeqIO.to_dict(SeqIO.parse(query_seq_file, "fasta"))
if args.jc_correct:
backbone_seq_names, backbone_seq_names_raw, backbone_seq_tensor, backbone_raw_array = \
process_seq(backbone_seq, args, isbackbone=True)
query_seq_names, query_seq_names_raw, query_seq_tensor, query_raw_array = \
process_seq(query_seq, args, isbackbone=False)
else:
# breakpoint()
if not (recon_model is None):
if (args.recon_backbone_emb is None) or (args.backbone_id is None) or (args.backbone_gap is None):
backbone_seq_names, backbone_seq_tensor, backbone_mask = process_seq(backbone_seq, args, isbackbone=True, need_mask=True)
torch.save(backbone_mask, f'{dis_file_root}/backbone_gap.pt')
else:
backbone_seq_names = torch.load(args.backbone_id)
backbone_mask = torch.load(args.backbone_gap)
query_seq_names, query_seq_tensor, query_mask = process_seq(query_seq, args, isbackbone=False, need_mask=True)
else:
if (args.backbone_emb is None) or (args.backbone_id is None):
backbone_seq_names, backbone_seq_tensor = process_seq(backbone_seq, args, isbackbone=True)
else:
backbone_seq_names = torch.load(args.backbone_id)
query_seq_names, query_seq_tensor = process_seq(query_seq, args, isbackbone=False)
if model is not None:
for param in model.parameters():
param.requires_grad = False
if recon_model is not None:
for param in recon_model.parameters():
param.requires_grad = False
print('finish data processing!')
print(f'{len(backbone_seq_names)} backbone sequences')
print(f'{len(query_seq_names)} query sequence(s)')
print(f'calculating embeddings...')
if not (model is None):
if (args.backbone_emb is None) or (args.backbone_id is None):
backbone_encodings = get_embeddings(backbone_seq_tensor, model)
else:
backbone_encodings = torch.load(args.backbone_emb)
query_encodings = get_embeddings(query_seq_tensor, model)
#torch.save(query_encodings, f'{dis_file_root}/query_embeddings.pt')
#torch.save(query_seq_names, f'{dis_file_root}/query_names.pt')
#torch.save(backbone_encodings, f'{dis_file_root}/backbone_embeddings.pt')
#torch.save(backbone_seq_names, f'{dis_file_root}/backbone_names.pt')
if not (recon_model is None):
if (args.recon_backbone_emb is None) or (args.backbone_id is None) or (args.backbone_gap is None):
recon_backbone_encodings = get_embeddings(backbone_seq_tensor, recon_model, backbone_mask)
else:
recon_backbone_encodings = torch.load(args.recon_backbone_emb)
recon_query_encodings = get_embeddings(query_seq_tensor, recon_model, query_mask)
torch.save(recon_backbone_encodings, f'{dis_file_root}/recon_backbone_embeddings.pt')
print(f'finish embedding calculation!')
print(f'calculating distance matrix...')
t2 = time.time()
#print('calculate embeddings', t2 - t1)
# query_dist = distance(query_encodings, backbone_encodings, args.distance_mode) * args.distance_ratio
if model:
query_dist = distance(query_encodings, backbone_encodings, args.distance_mode)
if not args.distance_mode == 'hyperbolic':
query_dist = query_dist * args.distance_ratio
else:
query_dist = query_dist * model.c
print(model.c, args.distance_mode)
# if 'square_root' in args.weighted_method:
# query_dist = query_dist ** 2
if recon_model:
gap_portion = 1 - query_mask.int().sum(-1) / query_mask.shape[-1]
recon_query_dist = distance(recon_query_encodings, recon_backbone_encodings, args.distance_mode)
if not args.distance_mode == 'hyperbolic':
recon_query_dist = recon_query_dist * args.distance_ratio
else:
recon_query_dist = recon_query_dist * model.c
# if 'square_root' in args.weighted_method:
# recon_query_dist = recon_query_dist ** 2
if model:
query_dist = query_dist * (1 - gap_portion) + recon_query_dist * gap_portion
else:
query_dist = recon_query_dist
t3 = time.time()
#print('calculate distance', t3 - t2)
query_dist = np.array(query_dist)
query_dist[query_dist < 1e-3] = 0
data_origin = dict(zip(query_seq_names, list(query_dist.astype(str))))
data_origin = "\t" + "\t".join(backbone_seq_names) + "\n" + \
"\n".join([str(k) + "\t"+ "\t".join(data_origin[k]) for k in data_origin]) + "\n"
t4 = time.time()
#print('convert string', t4 - t3)
with open(os.path.join(dis_file_root, f'depp.csv'), 'w') as f:
f.write(data_origin)
t5 = time.time()
#print('save string', t5 - t4)
# data_origin = pd.DataFrame.from_dict(data_origin, orient='index', columns=backbone_seq_names)
if args.query_dist:
idx = data_origin.index
data_origin = data_origin[idx]
# data_origin.to_csv(os.path.join(dis_file_root, f'depp.csv'), sep='\t')
# if not os.path.isdir(f'{args.outdir}/depp_tmp'):
# os.makedirs(f'{args.outdir}/depp_tmp')
# with open(f'{args.outdir}/depp_tmp/seq_name.txt', 'w') as f:
# f.write("\n".join(query_seq_names) + '\n')
print('original distanace matrix saved!')
print("take {:.2f} seconds".format(t5-t1))
class Distance(Function):
# @staticmethod
# def grad(x, v, sqnormx, sqnormv, sqdist, eps):
# alpha = (1 - sqnormx)
# beta = (1 - sqnormv)
# z = 1 + 2 * sqdist / (alpha * beta)
# a = ((sqnormv - 2 * torch.sum(x * v, dim=-1) + 1) / torch.pow(alpha, 2))\
# .unsqueeze(-1).expand_as(x)
# a = a * x - v / alpha.unsqueeze(-1).expand_as(v)
# z = torch.sqrt(torch.pow(z, 2) - 1)
# z = torch.clamp(z * beta, min=eps).unsqueeze(-1)
# d = 4 * a / z.expand_as(x)
# d_p = ((1 - sqnormx) ** 2 / 4).unsqueeze(-1) * d
# return d_p
@staticmethod
def grad(x, v, sqnormx, sqnormv, sqdist, eps):
alpha = (1 - sqnormx)
beta = (1 - sqnormv)
z = 1 + 2 * sqdist / (alpha * beta)
# print('z.shape', z.shape)
a = (sqnormv - 2 * torch.sum(x * v, dim=-1) + 1) / torch.pow(alpha, 2)
# print('a.shape', a.shape)
# print('v.shape', v.shape, alpha.shape)
# breakpoint()
a = a.unsqueeze(-1) * x - v / alpha.unsqueeze(-1)
z = torch.sqrt(torch.pow(z, 2) - 1)
z = torch.clamp(z * beta, min=eps)
d = 4 * a / z.unsqueeze(-1)
# print('d.shaped', d.shape)
d_p = ((1 - sqnormx) ** 2 / 4).unsqueeze(-1) * d
return d_p
@staticmethod
def forward(ctx, u, v, eps):
# breakpoint()
squnorm = torch.clamp(torch.sum(u * u, dim=-1), 0, 1 - eps)
sqvnorm = torch.clamp(torch.sum(v * v, dim=-1), 0, 1 - eps)
sqdist = torch.sum(torch.pow(u - v, 2), dim=-1)
ctx.eps = eps
ctx.save_for_backward(u, v, squnorm, sqvnorm, sqdist)
x = sqdist / ((1 - squnorm) * (1 - sqvnorm)) * 2 + 1
# arcosh
z = torch.sqrt(torch.pow(x, 2) - 1)
return torch.log(x + z)
@staticmethod
def backward(ctx, g):
u, v, squnorm, sqvnorm, sqdist = ctx.saved_tensors
g = g.unsqueeze(-1)
gu = Distance.grad(u, v, squnorm, sqvnorm, sqdist, ctx.eps)
gv = Distance.grad(v, u, sqvnorm, squnorm, sqdist, ctx.eps)
return g.expand_as(gu) * gu, g.expand_as(gv) * gv, None
def mobius_linear(
input,
weight,
bias=None,
hyperbolic_input=True,
hyperbolic_bias=True,
nonlin=None,
c=1.0,
):
if hyperbolic_input:
output = pmath.mobius_matvec(weight, input, c=c)
else:
output = torch.nn.functional.linear(input, weight)
output = pmath.expmap0(output, c=c)
if bias is not None:
if not hyperbolic_bias:
bias = pmath.expmap0(bias, c=c)
output = pmath.mobius_add(output, bias, c=c)
if nonlin is not None:
output = pmath.mobius_fn_apply(nonlin, output, c=c)
output = pmath.project(output, c=c)
return output
class MobiusLinear(torch.nn.Linear):
def __init__(
self,
*args,
hyperbolic_input=True,
hyperbolic_bias=True,
nonlin=None,
c=1.0,
**kwargs
):
super().__init__(*args, **kwargs)
self.ball = manifold = geoopt.PoincareBall(c=c)
if self.bias is not None:
if hyperbolic_bias:
self.ball = manifold = geoopt.PoincareBall(c=c)
self.bias = geoopt.ManifoldParameter(self.bias, manifold=manifold)
with torch.no_grad():
self.bias.set_(pmath.expmap0(self.bias.normal_() / 4, c=c))
with torch.no_grad():
self.weight.normal_(std=1e-2)
self.hyperbolic_bias = hyperbolic_bias
self.hyperbolic_input = hyperbolic_input
self.nonlin = nonlin
def forward(self, input):
return mobius_linear(
input,
weight=self.weight,
bias=self.bias,
hyperbolic_input=self.hyperbolic_input,
nonlin=self.nonlin,
hyperbolic_bias=self.hyperbolic_bias,
c=self.ball.c,
)
def extra_repr(self):
info = super().extra_repr()
info += "c={}, hyperbolic_input={}".format(self.ball.c, self.hyperbolic_input)
if self.bias is not None:
info = ", hyperbolic_bias={}".format(self.hyperbolic_bias)
return info