-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcmp.py
executable file
·198 lines (178 loc) · 6.92 KB
/
cmp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import sklearn.linear_model as lm
import sklearn.model_selection as ms
from sklearn import preprocessing
from sklearn.decomposition import PCA
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import pylab as P
import seaborn as sns
import util_io as uo
import lean_temperature_monthly as ltm
import pca_util
my_dpi = 300
imagedir = '/media/yujiex/work/project/images/'
def mse(y, yhat):
return sum((y - yhat)**2)/len(y)
def load_data(b, measure_type):
conn = uo.connect('interval_ion')
with conn:
df = pd.read_sql('SELECT * FROM {0}_wtemp WHERE Building_Number = \'{1}\''.format(measure_type, b), conn)
num = 720
df['chunk'] = df.index/num
df = df.groupby('chunk').filter(lambda x: len(x) == num)
y = np.array(df.groupby('chunk').sum()['eui'])
X = df.groupby('chunk')['Temperature_F'].apply(list).tolist()
X = np.array(X)
[Xtrain, Xtest, ytrain, ytest] = \
ms.train_test_split(X, y, test_size = 0.3, random_state=0)
return [Xtrain, Xtest, ytrain, ytest]
# add cv later
def baseline_ordinary(b, measure_type):
[Xtrain, Xtest, ytrain, ytest] = load_data(b, measure_type)
tmean = np.mean(Xtrain, axis=1)
lr = lm.LinearRegression()
lr.fit(Xtrain, ytrain)
yhat = lr.predict(Xtest)
error = mse(ytest, yhat)
print error
def baseline_piecewise(b, measure_type, s):
npar = 3
[Xtrain, Xtest, ytrain, ytest] = load_data(b, measure_type)
tmean = np.mean(Xtrain, axis=1)
if measure_type == 'gas':
d = ltm.piecewise_reg_one(b, s, npar, 'eui_gas', False, None, x=tmean, y=ytrain)
else:
d = ltm.piecewise_reg_one(b, s, npar, 'eui_elec', False, None, x=tmean, y=ytrain)
yhat = d['fun'](np.mean(Xtest, axis=1), *d['regression_par'])
error = mse(ytest, yhat)
print error
def ridge_test(b, measure_type):
[Xtrain, Xtest, ytrain, ytest] = load_data(b, measure_type)
# quesion: how to auto-select the lambda (fixme)
lambdas = np.arange(1, 1000000, 1000)
errs = []
# lambdas = lambdas[:2]
# for x in lambdas:
# alpha = x
# clf = lm.Ridge(alpha=alpha)
# clf.fit(Xtrain, ytrain)
# m = lm.Ridge(alpha=alpha, copy_X=True, fit_intercept=True, max_iter=None,
# normalize=False, random_state=None, solver='auto', tol=0.001)
# scores = ms.cross_val_score(clf, Xtrain, ytrain, cv=5, scoring='neg_mean_squared_error')
# # R2 error
# # scores = ms.cross_val_score(clf, Xtrain, ytrain, cv=5)
# error = abs(scores.mean())
# errs.append(error)
# plt.xlabel('lambda (ridge term)')
# plt.ylabel('mse (mean squared error)')
# plt.title('error change with change of ridge term')
# plt.plot(lambdas, errs, 'o')
# path = imagedir + 'cv_5_fold_ridge.png'
# P.savefig(path, dpi = my_dpi, figsize = (2000/my_dpi, 500/my_dpi))
# plt.close()
# try using sklearn.linear_model.lm.RidgeCV
# lambdas = np.arange(1, 1000000, 1000)
# errs = []
# clf = lm.RidgeCV().fit(Xtrain, ytrain)
# lm.RidgeCV(alphas=np.arange(1, 1000000, 1000), fit_intercept=True,
# normalize=False, store_cv_values=True)
# yhat = clf.predict(Xtest)
# error = mse(y, yhat)
# print error
# gather best ridge term and re-fit
alpha = 190000
clf = lm.Ridge(alpha=alpha)
clf.fit(Xtrain, ytrain)
lm.Ridge(alpha=alpha, copy_X=True, fit_intercept=True,
max_iter=None, normalize=False, random_state=None,
solver='auto', tol=0.001)
scores = ms.cross_val_score(clf, Xtrain, ytrain, cv=5, scoring='neg_mean_squared_error')
yhat = clf.predict(Xtest)
params = clf.coef_
plt.plot(params)
# plt.show()
plt.xlabel('nth')
plt.title('plot of ridge model coefficients')
path = imagedir + 'param_ridge_opt.png'
P.savefig(path, dpi = my_dpi, figsize = (2000/my_dpi, 500/my_dpi))
plt.close()
error = mse(ytest, yhat)
print error
# print scores
# print 'end'
return error
def pca_test_raw(b, measure_type):
[Xtrain, Xtest, ytrain, ytest] = load_data(b, measure_type)
var, pcs = pca_util.get_pc_matrix(Xtrain)
errs = []
total_vars = []
accounted_vars = np.cumsum(var) / sum(var)
# print accounted_vars
# plt.plot(range(1, len(var) + 1), accounted_vars, 'o')
# plt.title('Accounted variances vs #pcs')
# plt.xlabel('# principal components')
# plt.ylabel('percent of variances accounted for')
# path = imagedir + 'pca_err_numpc_{0}.png'.format(b)
# P.savefig(path, dpi = my_dpi, figsize = (2000/my_dpi, 500/my_dpi))
for pc in enumerate(pcs):
print i
def pca_test(b, measure_type):
[Xtrain, Xtest, ytrain, ytest] = load_data(b, measure_type)
# standardize training data
scaler_x = preprocessing.StandardScaler().fit(Xtrain)
Xtrain_scale = scaler_x.transform(Xtrain)
Xtest_scale = scaler_x.transform(Xtest)
scaler_y = preprocessing.StandardScaler().fit(ytrain.reshape(-1, 1))
ytrain_scale = scaler_y.transform(ytrain.reshape(-1, 1))
ytest_scale = scaler_y.transform(ytest.reshape(-1, 1))
# print Xtrain_scale.std(axis=0)
# Xtrain_scale = Xtrain
num_comps = range(1, ytest.shape[0])
errs = []
total_vars = []
for num_comp in num_comps:
pca = PCA(n_components=num_comp)
pca.fit(Xtrain_scale)
PCA(copy=True, iterated_power='auto', n_components=num_comp,
random_state=None, svd_solver='auto', tol=0.0, whiten=False)
total_var = sum(pca.explained_variance_ratio_)
total_vars.append(total_var)
pcs = pca.components_
Xtrain_trans = pca.fit_transform(Xtrain_scale)
lr = lm.LinearRegression()
lr.fit(Xtrain_trans, ytrain_scale)
Xtest_trans = pca.fit_transform(Xtest_scale)
yhat_scale = lr.predict(Xtest_trans)
# line1, = plt.plot(yhat, 'o')
# line2, = plt.plot(ytest, 'o')
# plt.legend([line1, line2], ['yhat', 'y'], loc=2,
# bbox_to_anchor=(1, 1))
# plt.show()
yhat = scaler_y.inverse_transform(yhat_scale)
error = mse(ytest_scale, yhat)[0]
errs.append(error)
print num_comp, total_var, error
f, axarr = plt.subplots(2, sharex=True)
axarr[0].plot(num_comps, errs, '-o', c='blue')
axarr[0].set_title('MSE changing as number of PC increases')
axarr[1].plot(num_comps, total_vars, '-o', c='red')
axarr[1].set_title('Accounted variance ratio')
plt.xlabel('number of PC (Principal Components) increases')
# plt.show()
path = imagedir + 'pca_err_pc.png'
P.savefig(path, dpi = my_dpi, figsize = (2000/my_dpi, 500/my_dpi))
plt.close()
def main():
sns.set_style("whitegrid")
sns.set_context("talk", font_scale=1)
b = 'OR0033PE'
s = 'KPDX'
measure_type = 'gas'
# baseline_ordinary(b, measure_type)
# baseline_piecewise(b, measure_type, s)
# ridge_test(b, measure_type)
pca_test(b, measure_type)
# pca_test_raw(b, measure_type)
return 0
main()