-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_building_set.py
executable file
·157 lines (141 loc) · 5.92 KB
/
get_building_set.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import pandas as pd
import os
import sqlite3
homedir = os.getcwd() + '/csv_FY/'
master_dir = homedir + 'master_table/'
def get_650_set(conn):
with conn:
df1 = pd.read_sql('SELECT DISTINCT Building_Number, Fiscal_Year FROM EUAS_monthly', conn)
df2 = pd.read_sql('SELECT Building_Number, Cat FROM EUAS_category', conn)
df = pd.merge(df1, df2, on='Building_Number', how='left')
df = df[df['Fiscal_Year'] > 2006]
df = df[df['Fiscal_Year'] < 2016]
df3 = df.groupby('Building_Number').filter(lambda x: len(x) > 5)
# print 'all building > 5 years of data: {0}'.format(df3['Building_Number'].nunique())
df4 = df[df['Cat'].isin(['A', 'I'])].groupby('Building_Number').filter(lambda x: len(x) > 5)
# print 'A + I building > 5 years of data: {0}'.format(df4['Building_Number'].nunique())
return set(df4['Building_Number'].tolist())
def get_covered_set():
conn = sqlite3.connect(homedir + 'db/all.db')
with conn:
df = pd.read_sql('SELECT DISTINCT Building_Number FROM covered_facility', conn)
return set(df['Building_Number'].tolist())
def get_ecm_set():
conn = sqlite3.connect(homedir + 'db/all.db')
with conn:
df = pd.read_sql('SELECT * FROM EUAS_ecm', conn)
# df = pd.read_csv(master_dir + 'ECM/EUAS_ecm.csv')
df = df[df['high_level_ECM'].notnull()]
return set(df['Building_Number'].tolist())
def get_action_set(col, lst):
conn = sqlite3.connect(homedir + 'db/all.db')
with conn:
df = pd.read_sql('SELECT * FROM EUAS_ecm', conn)
df = df[df[col].isin(lst)]
return set(df['Building_Number'].tolist())
def get_ecm_highlevel():
conn = sqlite3.connect(homedir + 'db/all.db')
with conn:
df = pd.read_sql('SELECT * FROM EUAS_ecm', conn)
df = df[df['high_level_ECM'].notnull()]
df = df[df['high_level_ECM'] != 'GSALink']
return set(df['Building_Number'].tolist())
def get_all_building_set():
conn = sqlite3.connect(homedir + 'db/all.db')
with conn:
df = pd.read_sql('SELECT DISTINCT Building_Number FROM EUAS_category', conn)
# df = pd.read_csv(master_dir + 'EUAS_static_tidy.csv')
result = set(df['Building_Number'].tolist())
return result
def get_cat_set(cat_list, conn):
with conn:
df = pd.read_sql('SELECT DISTINCT Building_Number, Cat FROM EUAS_category', conn)
df = df[df['Cat'].isin(cat_list)]
return set(df['Building_Number'].tolist())
# BOOKMARK
def get_energy_set(theme):
conn = sqlite3.connect(homedir + 'db/all.db')
with conn:
df = pd.read_sql('SELECT * FROM eui_by_fy', conn)
# df = pd.read_csv(master_dir + 'eui_by_fy_wcat.csv')
df = df[df['Fiscal_Year'] > 2006]
df = df[df['Fiscal_Year'] < 2016]
if theme == 'eui':
df['good'] = df.apply(lambda r: 1 if (r['eui_elec'] >= 12 and
r['eui_gas'] >= 3) else 0,
axis=1)
elif theme == 'eui_gas':
df['good'] = df.apply(lambda r: 1 if r['eui_gas'] >= 3 and
r['eui_elec'] < 12 else 0, axis=1)
elif theme == 'gas':
df['good'] = df.apply(lambda r: 1 if r['eui_gas'] >= 3 else 0,
axis=1)
elif theme == 'eui_elec':
df['good'] = df.apply(lambda r: 1 if r['eui_elec'] >= 12 and
r['eui_gas'] < 3 else 0, axis=1)
elif theme == 'elec':
df['good'] = df.apply(lambda r: 1 if r['eui_elec'] >= 12 else
0, axis=1)
elif theme is None:
df['good'] = 1
df = df[['Building_Number', 'good']]
df2 = df.groupby('Building_Number').sum()
df2 = df2[df2['good'] > 5]
df2.reset_index(inplace=True)
if conn:
conn.close()
return set(df2['Building_Number'].tolist())
def get_study_set():
conn = sqlite3.connect(homedir + 'db/all.db')
eng = get_energy_set('eui')
ai_set = get_cat_set(['A', 'I'], conn)
return eng.intersection(ai_set)
def get_program_set(lst):
conn = sqlite3.connect(homedir + 'db/all.db')
with conn:
df = pd.read_sql('SELECT * FROM EUAS_ecm_program', conn)
df = df[df['ECM_program'].isin(lst)]
return set(df['Building_Number'].tolist())
# programs = ['E4', 'Shave Energy', 'GSALink', 'first fuel', 'LEED_EB', 'GP', 'LEED_NC']
# print
# for p in programs:
# print len(get_program_set([p])), p
# actions = ['Advanced Metering', 'Building Tuneup or Utility Improvements', 'Building Envelope', 'Lighting', 'HVAC']
# print
# for a in actions:
# print len(get_action_set('high_level_ECM', [a])), a
def get_co_set(co):
ss = []
if co == 'Capital':
ss.append(get_program_set(['LEED_NC']))
ss.append(get_action_set('high_level_ECM',
['Lighting', 'HVAC', 'Building Envelope',
'Building Tuneup or Utility Improvements']).difference(set(['DC0031ZZ'])))
elif co == 'Operational':
# First Fuel, Shave Energy, E4, LEED_EB
ss.append(get_program_set(['first fuel', 'Shave Energy', 'E4',
'LEED_EB', 'GP']))
# GSALink, advanced metering
ss.append(get_action_set('high_level_ECM', ['GSALink', 'Advanced Metering']))
# Stand Alone Commissioning
ss.append(set(['DC0031ZZ']))
# GP EB
# AMI real time monitoring
return reduce(lambda x, y: x.union(y), ss)
def get_invest_set():
s1 = get_co_set('Capital')
s2 = get_co_set('Operational')
cap_only = s1.difference(s2)
op_only = s2.difference(s1)
cap_and_op = s1.intersection(s2)
cap_or_op = s1.union(s2)
return (cap_only, op_only, cap_and_op, cap_or_op)
def get_no_invest_set():
s1 = get_all_building_set()
s2 = get_invest_set()[-1]
return s1.difference(s2)
def intersect_EUAS(df):
euas = get_all_building_set()
return df[df['Building_Number'].isin(euas)]
result = pd.DataFrame({'good_eui': list(get_energy_set("eui"))})
result.to_csv("~/Dropbox/gsa_2017/csv_FY/good_eui.csv")