-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_upload_seed.R
65 lines (59 loc) · 2.7 KB
/
get_upload_seed.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
library("DBI")
library("reshape2")
library("ggplot2")
library("dplyr")
library("readr")
library("readxl")
library("RColorBrewer")
library("lubridate")
con <- dbConnect(RSQLite::SQLite(), "csv_FY/db/all.db")
alltables = dbListTables(con)
df1 = dbGetQuery(con, 'SELECT * FROM EUAS_monthly' ) %>%
as_data_frame() %>%
dplyr::select("Building_Number", "Electric_(kBtu)", "Gas_(kBtu)",
"year", "month", "Electricity_(Cost)",
"Gas_(Cost)") %>%
{.}
df2 = readr::read_csv("seeddb/gsa_energy/sourcetable/gsa_static_import_singlebuilding.csv") %>%
as_data_frame() %>%
dplyr::rename(`Building_Number`=`|Building_Number`,
`Street_Address`=`|Street_Address`) %>%
dplyr::select(`Building_Number`, `Street_Address`) %>%
{.}
energy_use = df1 %>%
dplyr::select("Building_Number", "year", "month",
"Electric_(kBtu)", "Gas_(kBtu)") %>%
melt(id.vars=c("Building_Number", "year", "month"),
variable.name="Meter Type", value.name="Usage/Quantity") %>%
dplyr::mutate_at(vars(`Meter Type`), recode,
"Electric_(kBtu)" = "Electricity",
"Gas_(kBtu)" = "Natural Gas") %>%
{.}
unique(energy_use$"Meter Type")
energy_cost = df1 %>%
dplyr::select("Building_Number", "year", "month",
"Electricity_(Cost)", "Gas_(Cost)") %>%
melt(id.vars=c("Building_Number", "year", "month"), variable.name="Meter Type", value.name="Cost ($)") %>%
dplyr::mutate_at(vars(`Meter Type`), recode,
"Electricity_(Cost)" = "Electricity",
"Gas_(Cost)" = "Natural Gas") %>%
{.}
unique(energy_cost$"Meter Type")
energy_use %>%
dplyr::left_join(energy_cost, by=c("Building_Number", "year", "month", "Meter Type")) %>%
dplyr::left_join(df2, by=c("Building_Number")) %>%
dplyr::mutate(`year`=as.character(`year`)) %>%
dplyr::mutate(`month`=as.character(`month`)) %>%
dplyr::mutate(`Start Date`=as.Date(paste(`year`, `month`, "1", sep = "-" ), format = "%Y-%m-%d")) %>%
dplyr::mutate(`End Date`=as.Date(paste(`year`, `month`, days_in_month(`Start Date`), sep = "-" ), format = "%Y-%m-%d")) %>%
dplyr::rename(`Property Name`=`Building_Number`,
`Street Address`=`Street_Address`) %>%
dplyr::mutate(`Usage Units`="kBtu (thousand Btu)") %>%
dplyr::select(-`year`, -`month`) %>%
dplyr::mutate(`Custom ID`=NA) %>%
dplyr::mutate(`Custom Meter ID`=NA) %>%
dplyr::select(`Street Address`, `Property Name`, `Custom ID`,
`Custom Meter ID`, `Meter Type`, `Start Date`,
`End Date`, `Usage/Quantity`, `Usage Units`,
`Cost ($)`) %>%
write_csv("seeddb/gsa_energy/upload.csv")