-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreading_backup.py
executable file
·274 lines (236 loc) · 9.66 KB
/
reading_backup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# separate excel sheets to csv files
import pandas as pd
import os
import glob
import datetime
import numpy as np
## ## ## ## ## ## ## ## ## ## ##
## logging and debugging logger.info settings
import logging
import sys
logger = logging.Logger('reading')
logger.setLevel(logging.DEBUG)
logger.addHandler(logging.StreamHandler())
# read the ith sheet of excel and write a csv to outdir
def excel2csv_single(excel, i, outdir):
df = pd.read_excel(excel, sheetname=int(i), skiprows=4, header=5)
file_out = outdir + 'sheet-{0}-all_col'.format(i) + '.csv'
df.to_csv(file_out, index=False)
# read static info to a data frame
# sheet-0: static info
# 1. postal code : take first 5 digit
# 2. property name : take the substring before '-'
def read_static():
indir = os.getcwd() + '/csv/select_column/'
csv = indir + 'sheet-0.csv'
logger.debug('read static info')
df = pd.read_csv(csv)
# take the five digits of zip code
df['Property Name'] = df['Property Name'].map(lambda x: x[:x.find('-')])
df['Postal Code'] = df['Postal Code'].map(lambda x: x[:5])
#logger.debug(df[:20])
return df
def split_energy_building():
indir = os.getcwd() + '/csv/select_column/'
csv = indir + 'sheet-5.csv'
logger.debug('split energy to building')
outdir = os.getcwd() + '/csv/single_building/'
df = pd.read_csv(csv)
# auto-fill missing data
df = df.fillna(0)
group_building = df.groupby('Portfolio Manager ID')
for name, group in group_building:
group.to_csv(outdir + 'pm-' + str(name) + '.csv', index=False)
def check_null(csv):
print 'checking number of missing values for columns'
df = pd.read_csv(csv)
for col in df:
print '## ------------------------------------------##'
print col
df_check = df[col].isnull()
df_check = df_check.map(lambda x: 'Null' if x else 'non_Null')
print df_check.value_counts()
def check_null_df(df):
print 'checking number of missing values for columns'
for col in df:
print '## ------------------------------------------##'
print col
df_check = df[col].isnull()
df_check = df_check.map(lambda x: 'Null' if x else 'non_Null')
print df_check.value_counts()
def get_range(df):
print 'range for columns'
for col in df:
if not (col == 'Meter Type' or col == 'Usage Units'):
print '{0:>28} {1:>25} {2:>25}'.format(col, df[col].min(),
df[col].max())
def count_nn(df, col):
df['is_nn'] = df[col].map(lambda x: '>=0' if x >= 0 else '<0')
series = df['is_nn'].value_counts()
print series
grouped = df.groupby(['is_nn', 'Meter Type'])
print grouped.size()
'''
for name, group in grouped:
print name
print group
'''
df.drop('is_nn', axis = 1, inplace=True)
def clear_data():
indir = os.getcwd() + '/csv/select_column/'
# check null value
'''
filelist = glob.glob(indir + '*.csv')
for csv in filelist:
check_null(csv)
'''
# return range of values
df = pd.read_csv(indir + 'sheet-5.csv')
get_range(df)
# count non-neg value for column
count_nn(df, 'Usage/Quantity')
# discard null 'End Date' value and negative 'Usage/Quantity'
# fill empty cost with -1 for current use
logger.debug('Null value count of \'Cost ($)\' before fillna')
print df['Cost ($)'].isnull().value_counts()
logger.debug('Fill \'Cost ($)\' with -1')
df['Cost ($)'].fillna(-1, inplace=True)
logger.debug('Null value count of \'Cost ($)\' after fillna')
print df['Cost ($)'].isnull().value_counts()
logger.debug('Null value count of \'End Date\' before drop null')
print df['End Date'].isnull().value_counts()
logger.debug('Drop null value of \'End Date\'')
df.dropna(inplace=True)
logger.debug('Null value count of \'End Date\'after drop null')
logger.debug(df['End Date'].isnull().value_counts())
logger.debug('negative value count of \'Usage\'')
df['sign_nn'] = df['Usage/Quantity'].map(lambda x: '>=0' if x >= 0 else '<0')
logger.debug(df['sign_nn'].value_counts())
logger.debug('Mark negative value as nan')
df['mark_nn'] = df['Usage/Quantity'].map(lambda x: x if x >= 0 else np.nan)
logger.debug(df['mark_nn'].isnull().value_counts())
df.dropna(inplace=True)
logger.debug('Null value count of removing negative usage')
logger.debug(df['Usage/Quantity'].isnull().value_counts())
# drop temporary columns
df.drop(['sign_nn', 'mark_nn'], axis = 1, inplace=True)
# return range of column after removing illegal values
get_range(df)
# count non-neg value for column
logger.debug('Checking non-negativity after initial clean')
count_nn(df, 'Usage/Quantity')
# create 'Year' and 'Month' column
df['Year'] = df['End Date'].map(lambda x : x[:4])
df['Month'] = df['End Date'].map(lambda x: x[5:7])
logger.debug('Final range of the data')
get_range(df)
return df
'''
print 'group by building and meter type:'
group_building = df.groupby(['Portfolio Manager ID', 'Meter Type'])
print group_building.size()
group_type = df.groupby('Meter Type')
print 'number of meter type: {0}'.format(len(group_type.groups))
print group_type.size()
group_type = df.groupby('Year')
print 'number of year: {0}'.format(len(group_type.groups))
print group_type.size()
group_type = df.groupby('Property Manager ID')
print 'number of building: {0}'.format(len(group_type.groups))
print group_type.size()
'''
def format_building():
indir = os.getcwd() + '/csv/single_building/'
filelist = glob.glob(indir + '*.csv')
outdir = os.getcwd() + '/csv/single_building_allinfo/'
for csv in filelist:
filename = csv[csv.find('pm'):]
logger.info('format file: {0}'.format(filename))
df = pd.read_csv(csv)
df.set_index
# create year and month column
group_type = df.groupby('Meter Type')
for name, group in group_type:
outfilename = filename[:-4] + '-' + str(name) + '.csv'
outfilename = outfilename.replace('/', 'or')
outfilename = outfilename.replace(':', '-')
print outfilename
group.to_csv(outdir + outfilename, index=False)
'''
df_base = group_type.first()
acclist = [df_base]
for name, group in group_type:
acc = acclist.pop()
acclist.append(pd.merge(acc, group, how='inner', on=['Year', 'Month']))
print acclist.pop()
# default to water
df_base = group_type.get_group('Potable: Mixed Indoor/Outdoor')
if 'Electric - Grid' in group_type.groups:
merge_1 = pd.merge(df_base, group_type.get_group('Electric - Grid'), how = 'right', on = ['Year', 'Month'], suffixes = ['_water', '_elec'])
else:
merge_1 = df_base
#logger.debug(merge_1[:10])
#if 'Natural Gas' in group_type.groups:
gas = group_type.get_group('Natural Gas')
merge_2 = pd.merge(gas, group_type.get_group('Fuel Oil (No. 2)'), how = 'right', on = ['Year', 'Month'], suffixes = ['_gas', '_oil'])
logger.debug(merge_2[:10])
merge_all = pd.merge(merge_1, merge_2, left_on = ['Year_elec', 'Month_elec'], right_on = ['Year_gas', 'Month_gas'])
logger.debug('merged ###########################')
#logger.debug(merge_3[:10])
merge_all.info()
'''
'''
df_all.drop('Usage/Quantity')
logger.debug(df_all[:10])
df_join = df_all.join(df_static, on = 'Portfolio Manager ID',
lsuffix = 'l', rsuffix = '_r')
df_join.drop('Portfolio Manager ID_l', 1)
df_join.drop('Portfolio Manager ID_r', 1)
logger.debug(df[:10])
outfilename = outdir + 'post-' + filename
df_join.to_csv(outfilename, index=False)
'''
# process all excels
def main():
'''
indir = os.getcwd() + '/input/'
filelist = glob.glob(indir + '*.xlsx')
logger.info('separate excel file to csv: {0}'.format(filelist))
outdir = os.getcwd() + '/csv/all_column/'
for excel in filelist:
for i in ['0', '5']:
logger.info('reading sheet {0}'.format(i))
excel2csv_single(excel, i, outdir)
logger.info('read csv in {0} with selected column: {1}'.format(outdir,
filelist))
filelist = glob.glob(os.getcwd() + '/csv/all_column/' + '*.csv')
col_dict = {'0':[0, 1, 5, 7, 9, 12], '5':[1, 2, 4, 6, 8, 9, 10]}
for csv in filelist:
filename = csv[csv.find('sheet'):]
logger.info('reading csv file: {0}'.format(filename))
idx = filename[filename.find('-') + 1:filename.find('-') + 2]
logger.info('file index: {0}'.format(idx))
df = pd.read_csv(csv, usecols = col_dict[idx])
outdir = os.getcwd() + '/csv/select_column/'
outfilename = filename[:filename.find('all') - 1] + '.csv'
logger.info('outdir = {0}, outfilename = {1}'.format(outdir,
outfilename))
df.to_csv(outdir + outfilename, index=False)
# split energy data to single building
split_energy_building()
# data frame containing static information
df_static = read_static()
format_building(df_static)
'''
# process:
# sheet-1: energy info, read in df,
# group by Portfolio Manager ID
# write to a folder
# for each file in the folder
# read to df
# group by Meter Type
# aggregate all meters in one df
# convert date time to year and month
# write to a different folder
#main()
format_building()