-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsql.py
executable file
·371 lines (308 loc) · 11.7 KB
/
sql.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
# source: https://gist.github.com/jorisvandenbossche/10841234#file-sql-py
"""
Patched version to support PostgreSQL
(original version: https://github.com/pydata/pandas/blob/v0.13.1/pandas/io/sql.py)
Adapted functions are:
- added _write_postgresql
- updated table_exist
- updated get_sqltype
- updated get_schema
Collection of query wrappers / abstractions to both facilitate data
retrieval and to reduce dependency on DB-specific API.
"""
from __future__ import print_function
from datetime import datetime, date
from pandas.compat import range, lzip, map, zip
import pandas.compat as compat
import numpy as np
import traceback
from pandas.core.datetools import format as date_format
from pandas.core.api import DataFrame, isnull
#------------------------------------------------------------------------------
# Helper execution function
def execute(sql, con, retry=True, cur=None, params=None):
"""
Execute the given SQL query using the provided connection object.
Parameters
----------
sql: string
Query to be executed
con: database connection instance
Database connection. Must implement PEP249 (Database API v2.0).
retry: bool
Not currently implemented
cur: database cursor, optional
Must implement PEP249 (Datbase API v2.0). If cursor is not provided,
one will be obtained from the database connection.
params: list or tuple, optional
List of parameters to pass to execute method.
Returns
-------
Cursor object
"""
try:
if cur is None:
cur = con.cursor()
if params is None:
cur.execute(sql)
else:
cur.execute(sql, params)
return cur
except Exception:
try:
con.rollback()
except Exception: # pragma: no cover
pass
print('Error on sql %s' % sql)
raise
def _safe_fetch(cur):
try:
result = cur.fetchall()
if not isinstance(result, list):
result = list(result)
return result
except Exception as e: # pragma: no cover
excName = e.__class__.__name__
if excName == 'OperationalError':
return []
def tquery(sql, con=None, cur=None, retry=True):
"""
Returns list of tuples corresponding to each row in given sql
query.
If only one column selected, then plain list is returned.
Parameters
----------
sql: string
SQL query to be executed
con: SQLConnection or DB API 2.0-compliant connection
cur: DB API 2.0 cursor
Provide a specific connection or a specific cursor if you are executing a
lot of sequential statements and want to commit outside.
"""
cur = execute(sql, con, cur=cur)
result = _safe_fetch(cur)
if con is not None:
try:
cur.close()
con.commit()
except Exception as e:
excName = e.__class__.__name__
if excName == 'OperationalError': # pragma: no cover
print('Failed to commit, may need to restart interpreter')
else:
raise
traceback.print_exc()
if retry:
return tquery(sql, con=con, retry=False)
if result and len(result[0]) == 1:
# python 3 compat
result = list(lzip(*result)[0])
elif result is None: # pragma: no cover
result = []
return result
def uquery(sql, con=None, cur=None, retry=True, params=None):
"""
Does the same thing as tquery, but instead of returning results, it
returns the number of rows affected. Good for update queries.
"""
cur = execute(sql, con, cur=cur, retry=retry, params=params)
result = cur.rowcount
try:
con.commit()
except Exception as e:
excName = e.__class__.__name__
if excName != 'OperationalError':
raise
traceback.print_exc()
if retry:
print('Looks like your connection failed, reconnecting...')
return uquery(sql, con, retry=False)
return result
def read_frame(sql, con, index_col=None, coerce_float=True, params=None):
"""
Returns a DataFrame corresponding to the result set of the query
string.
Optionally provide an index_col parameter to use one of the
columns as the index. Otherwise will be 0 to len(results) - 1.
Parameters
----------
sql: string
SQL query to be executed
con: DB connection object, optional
index_col: string, optional
column name to use for the returned DataFrame object.
coerce_float : boolean, default True
Attempt to convert values to non-string, non-numeric objects (like
decimal.Decimal) to floating point, useful for SQL result sets
params: list or tuple, optional
List of parameters to pass to execute method.
"""
cur = execute(sql, con, params=params)
rows = _safe_fetch(cur)
columns = [col_desc[0] for col_desc in cur.description]
cur.close()
con.commit()
result = DataFrame.from_records(rows, columns=columns,
coerce_float=coerce_float)
if index_col is not None:
result = result.set_index(index_col)
return result
frame_query = read_frame
read_sql = read_frame
def write_frame(frame, name, con, flavor='sqlite', if_exists='replace', **kwargs):
"""
Write records stored in a DataFrame to a SQL database.
Parameters
----------
frame: DataFrame
name: name of SQL table
con: an open SQL database connection object
flavor: {'sqlite', 'mysql', 'oracle'}, default 'sqlite'
if_exists: {'fail', 'replace', 'append'}, default 'fail'
fail: If table exists, do nothing.
replace: If table exists, drop it, recreate it, and insert data.
append: If table exists, insert data. Create if does not exist.
"""
if 'append' in kwargs:
import warnings
warnings.warn("append is deprecated, use if_exists instead",
FutureWarning)
if kwargs['append']:
if_exists = 'append'
else:
if_exists = 'fail'
if if_exists not in ('fail', 'replace', 'append'):
raise ValueError("'%s' is not valid for if_exists" % if_exists)
exists = table_exists(name, con, flavor)
if if_exists == 'fail' and exists:
raise ValueError("Table '%s' already exists." % name)
# creation/replacement dependent on the table existing and if_exist criteria
create = None
if exists:
if if_exists == 'fail':
raise ValueError("Table '%s' already exists." % name)
elif if_exists == 'replace':
cur = con.cursor()
cur.execute("DROP TABLE %s;" % name)
cur.close()
create = get_schema(frame, name, flavor)
else:
create = get_schema(frame, name, flavor)
if create is not None:
cur = con.cursor()
cur.execute(create)
cur.close()
cur = con.cursor()
# Replace spaces in DataFrame column names with _.
safe_names = [s.replace(' ', '_').strip() for s in frame.columns]
flavor_picker = {'sqlite' : _write_sqlite,
'mysql' : _write_mysql,
'postgresql' : _write_postgresql}
func = flavor_picker.get(flavor, None)
if func is None:
raise NotImplementedError
func(frame, name, safe_names, cur)
cur.close()
con.commit()
def _write_sqlite(frame, table, names, cur):
bracketed_names = ['[' + column + ']' for column in names]
col_names = ','.join(bracketed_names)
wildcards = ','.join(['?'] * len(names))
insert_query = 'INSERT INTO %s (%s) VALUES (%s)' % (
table, col_names, wildcards)
# pandas types are badly handled if there is only 1 column ( Issue #3628 )
if not len(frame.columns) == 1:
data = [tuple(x) for x in frame.values]
else:
data = [tuple(x) for x in frame.values.tolist()]
cur.executemany(insert_query, data)
def _write_mysql(frame, table, names, cur):
bracketed_names = ['`' + column + '`' for column in names]
col_names = ','.join(bracketed_names)
wildcards = ','.join([r'%s'] * len(names))
insert_query = "INSERT INTO %s (%s) VALUES (%s)" % (
table, col_names, wildcards)
data = [tuple(x) for x in frame.values]
cur.executemany(insert_query, data)
def _write_postgresql(frame, table, names, cur):
bracketed_names = ['"' + column + '"' for column in names]
col_names = ','.join(bracketed_names)
wildcards = ','.join([r'%s'] * len(names))
insert_query = 'INSERT INTO public.{0} ({1}) VALUES ({2})'.format(table, col_names, wildcards)
data = [tuple(x) for x in frame.values]
# print(len(insert_query))
# print(len(data))
cur.executemany(insert_query, data)
def table_exists(name, con, flavor):
flavor_map = {
'sqlite': ("SELECT name FROM sqlite_master "
"WHERE type='table' AND name='%s';") % name,
'mysql' : "SHOW TABLES LIKE '%s'" % name,
'postgresql' : "SELECT * FROM pg_catalog.pg_tables where tablename = '%s'" % name}
query = flavor_map.get(flavor, None)
# if query is None:
# raise NotImplementedError
return len(tquery(query, con)) > 0
def get_sqltype(pytype, flavor):
sqltype = {'mysql': 'VARCHAR (63)',
'sqlite': 'TEXT',
'postgresql': 'VARCHAR (63)'}
if issubclass(pytype, np.floating):
sqltype['mysql'] = 'FLOAT'
sqltype['sqlite'] = 'REAL'
sqltype['postgresql'] = 'double precision'
if issubclass(pytype, np.integer):
#TODO: Refine integer size.
sqltype['mysql'] = 'BIGINT'
sqltype['sqlite'] = 'INTEGER'
sqltype['postgresql'] = 'integer'
if issubclass(pytype, np.datetime64) or pytype is datetime:
# Caution: np.datetime64 is also a subclass of np.number.
sqltype['mysql'] = 'DATETIME'
sqltype['sqlite'] = 'TIMESTAMP'
sqltype['postgresql'] = 'timestamp'
if pytype is datetime.date:
sqltype['mysql'] = 'DATE'
sqltype['sqlite'] = 'TIMESTAMP'
sqltype['postgresql'] = 'date'
if issubclass(pytype, np.bool_):
sqltype['sqlite'] = 'INTEGER'
sqltype['postgresql'] = 'boolean'
return sqltype[flavor]
def get_schema(frame, name, flavor, keys=None):
"Return a CREATE TABLE statement to suit the contents of a DataFrame."
lookup_type = lambda dtype: get_sqltype(dtype.type, flavor)
# Replace spaces in DataFrame column names with _.
safe_columns = [s.replace(' ', '_').strip() for s in frame.dtypes.index]
column_types = lzip(safe_columns, map(lookup_type, frame.dtypes))
if flavor == 'sqlite':
columns = ',\n '.join('[%s] %s' % x for x in column_types)
elif flavor == 'postgresql':
columns = ',\n '.join('"%s" %s' % x for x in column_types)
else:
columns = ',\n '.join('`%s` %s' % x for x in column_types)
keystr = ''
if keys is not None:
if isinstance(keys, compat.string_types):
keys = (keys,)
keystr = ', PRIMARY KEY (%s)' % ','.join(keys)
template = """CREATE TABLE %(name)s (
%(columns)s
%(keystr)s
);"""
create_statement = template % {'name': name, 'columns': columns,
'keystr': keystr}
return create_statement
def sequence2dict(seq):
"""Helper function for cx_Oracle.
For each element in the sequence, creates a dictionary item equal
to the element and keyed by the position of the item in the list.
>>> sequence2dict(("Matt", 1))
{'1': 'Matt', '2': 1}
Source:
http://www.gingerandjohn.com/archives/2004/02/26/cx_oracle-executemany-example/
"""
d = {}
for k, v in zip(range(1, 1 + len(seq)), seq):
d[str(k)] = v
return d