-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsummary_cost_byRegion.R
59 lines (51 loc) · 2.9 KB
/
summary_cost_byRegion.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
library("dplyr")
library("DBI")
library("RSQLite")
library("ggplot2")
library("readr")
library("readxl")
con <- dbConnect(RSQLite::SQLite(), "csv_FY/db/all.db")
alltables = dbListTables(con)
querystr = paste0("SELECT DISTINCT [Building_Number], [Region_No.], year, month, [Gross_Sq.Ft], [eui_elec], [eui_gas], [Electric_(kBtu)], [Gas_(kBtu)], [Electricity_(Cost)], [Gas_(Cost)] FROM EUAS_monthly")
dfEnergy = dbGetQuery(con, querystr) %>%
as_data_frame() %>%
dplyr::mutate(`Electric_cost_per_sqft`=`Electricity_(Cost)` / `Gross_Sq.Ft`) %>%
dplyr::mutate(`Gas_cost_per_sqft`=`Gas_(Cost)` / `Gross_Sq.Ft`) %>%
{.}
## querystr = paste0("SELECT * FROM EUAS_type")
## dbGetQuery(con, querystr) %>%
## as_data_frame() %>%
## head()
dfType = readxl::read_excel("input/FY/static info/euas database of buildings cmu.xlsx",sheet = 1) %>%
as_data_frame() %>%
na.omit() %>%
{.}
dfEnergy %>%
dplyr::left_join(dfType, by="Building_Number") %>%
na.omit() %>%
dplyr::filter(`Gross_Sq.Ft` > 0) %>%
dplyr::mutate(`Region_No.`=as.integer(`Region_No.`)) %>%
dplyr::group_by(`Region_No.`, `GSA Property Type`, `year`) %>%
summarise(`Total Electricity kBtu `=sum(`Electric_(kBtu)`), `Total_Gas kBtu`=sum(`Gas_(kBtu)`),
`Total Electricity Cost`=sum(`Electricity_(Cost)`), `Total Gas Cost`=sum(`Gas_(Cost)`),
`Total Electricity kBtu / sqft `=sum(`eui_elec`), `Total_Gas kBtu / sqft`=sum(`eui_gas`),
`Total Electricity Cost / sqft`=sum(`Electric_cost_per_sqft`), `Total Gas Cost / sqft`=sum(`Gas_cost_per_sqft`)) %>%
readr::write_csv("csv_FY/region9/energyAndCost.csv")
querystr = paste0("SELECT DISTINCT [Building_Number], [Region_No.], [Gross_Sq.Ft], Fiscal_Year, Fiscal_Month, [Electric_(kBtu)], [Gas_(kBtu)], [Electricity_(Cost)], [Gas_(Cost)] FROM EUAS_monthly")
dbGetQuery(con, querystr) %>%
as_data_frame() %>%
dplyr::mutate(`Region_No.`=as.integer(`Region_No.`)) %>%
dplyr::group_by(`Region_No.`, `Fiscal_Year`, `Building_Number`) %>%
summarise(`Total Electricity kBtu`=sum(`Electric_(kBtu)`), `Total Gas kBtu`=sum(`Gas_(kBtu)`),
`Total Electricity Cost`=sum(`Electricity_(Cost)`), `Total Gas Cost`=sum(`Gas_(Cost)`),
`Total Sq.Ft`=mean(`Gross_Sq.Ft`)) %>%
dplyr::ungroup() %>%
dplyr::group_by(`Region_No.`, `Fiscal_Year`) %>%
summarise(`Total Electricity kBtu`=sum(`Total Electricity kBtu`), `Total Gas kBtu`=sum(`Total Gas kBtu`),
`Total Electricity Cost`=sum(`Total Electricity Cost`), `Total Gas Cost`=sum(`Total Gas Cost`),
`Total Sq.Ft`=sum(`Total Sq.Ft`)) %>%
dplyr::mutate(`Electricity kBtu / sqft` = `Total Electricity kBtu` / `Total Sq.Ft`,
`Gas kBtu / sqft` = `Total Gas kBtu` / `Total Sq.Ft`,
`Electricity Cost / sqft` = `Total Electricity Cost` / `Total Sq.Ft`,
`Gas Cost / sqft` = `Total Gas Cost` / `Total Sq.Ft`) %>%
readr::write_csv("csv_FY/energyKbtuCostByRegionYear.csv")