forked from rcamino/multi-categorical-gans
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiscriminator.py
37 lines (26 loc) · 1.08 KB
/
discriminator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from __future__ import print_function
import torch
import torch.nn as nn
class Discriminator(nn.Module):
def __init__(self, input_size, hidden_sizes=(256, 128)):
super(Discriminator, self).__init__()
hidden_activation = nn.LeakyReLU()
previous_layer_size = input_size * 2
layers = []
for layer_size in hidden_sizes:
layers.append(nn.Linear(previous_layer_size, layer_size))
layers.append(hidden_activation)
previous_layer_size = layer_size
layers.append(nn.Linear(previous_layer_size, 1))
layers.append(nn.Sigmoid())
self.model = nn.Sequential(*layers)
def minibatch_averaging(self, inputs):
"""
This method is explained in the MedGAN paper.
"""
mean_per_feature = torch.mean(inputs, 0)
mean_per_feature_repeated = mean_per_feature.repeat(len(inputs), 1)
return torch.cat((inputs, mean_per_feature_repeated), 1)
def forward(self, inputs):
inputs = self.minibatch_averaging(inputs)
return self.model(inputs).view(-1)