-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathmodel_vae.py
167 lines (139 loc) · 8.51 KB
/
model_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import tensorflow as tf
import tensorlayer as tl
from tensorlayer.layers import *
flags = tf.app.flags
FLAGS = flags.FLAGS
def encoder(input_imgs, is_train = True, reuse = False):
'''
input_imgs: the input images to be encoded into a vector as latent representation. size here is [b_size,64,64,3]
'''
z_dim = FLAGS.z_dim # 512
ef_dim = 64 # encoder filter number
w_init = tf.random_normal_initializer(stddev=0.02)
gamma_init = tf.random_normal_initializer(1., 0.02)
with tf.variable_scope("encoder", reuse = reuse):
tl.layers.set_name_reuse(reuse)
net_in = InputLayer(input_imgs, name='en/in') # (b_size,64,64,3)
net_h0 = Conv2d(net_in, ef_dim, (5, 5), (2, 2), act=None,
padding='SAME', W_init=w_init, name='en/h0/conv2d')
net_h0 = BatchNormLayer(net_h0, act=tf.nn.relu,
is_train=is_train, gamma_init=gamma_init, name='en/h0/batch_norm')
# net_h0.outputs._shape = (b_size,32,32,64)
net_h1 = Conv2d(net_h0, ef_dim*2, (5, 5), (2, 2), act=None,
padding='SAME', W_init=w_init, name='en/h1/conv2d')
net_h1 = BatchNormLayer(net_h1, act=tf.nn.relu,
is_train=is_train, gamma_init=gamma_init, name='en/h1/batch_norm')
# net_h1.outputs._shape = (b_size,16,16,64*2)
net_h2 = Conv2d(net_h1, ef_dim*4, (5, 5), (2, 2), act=None,
padding='SAME', W_init=w_init, name='en/h2/conv2d')
net_h2 = BatchNormLayer(net_h2, act=tf.nn.relu,
is_train=is_train, gamma_init=gamma_init, name='en/h2/batch_norm')
# net_h2.outputs._shape = (b_size,8,8,64*4)
net_h3 = Conv2d(net_h2, ef_dim*8, (5, 5), (2, 2), act=None,
padding='SAME', W_init=w_init, name='en/h3/conv2d')
net_h3 = BatchNormLayer(net_h3, act=tf.nn.relu,
is_train=is_train, gamma_init=gamma_init, name='en/h3/batch_norm')
# net_h2.outputs._shape = (b_size,4,4,64*8)
# mean of z
net_h4 = FlattenLayer(net_h3, name='en/h4/flatten')
# net_h4.outputs._shape = (b_size,8*8*64*4)
net_out1 = DenseLayer(net_h4, n_units=z_dim, act=tf.identity,
W_init = w_init, name='en/h3/lin_sigmoid')
net_out1 = BatchNormLayer(net_out1, act=tf.identity,
is_train=is_train, gamma_init=gamma_init, name='en/out1/batch_norm')
# net_out1 = DenseLayer(net_h4, n_units=z_dim, act=tf.nn.relu,
# W_init = w_init, name='en/h4/lin_sigmoid')
z_mean = net_out1.outputs # (b_size,512)
# log of variance of z(covariance matrix is diagonal)
net_h5 = FlattenLayer(net_h3, name='en/h5/flatten')
net_out2 = DenseLayer(net_h5, n_units=z_dim, act=tf.identity,
W_init = w_init, name='en/h4/lin_sigmoid')
net_out2 = BatchNormLayer(net_out2, act=tf.nn.softplus,
is_train=is_train, gamma_init=gamma_init, name='en/out2/batch_norm')
# net_out2 = DenseLayer(net_h5, n_units=z_dim, act=tf.nn.relu,
# W_init = w_init, name='en/h5/lin_sigmoid')
z_log_sigma_sq = net_out2.outputs + 1e-6# (b_size,512)
return net_out1, net_out2, z_mean, z_log_sigma_sq
def generator(inputs, is_train = True, reuse = False):
'''
generator of GAN, which can also be seen as a decoder of VAE
inputs: latent representation from encoder. [b_size,z_dim]
'''
image_size = FLAGS.output_size # 64 the output size of generator
s2, s4, s8, s16 = int(image_size/2), int(image_size/4), int(image_size/8), int(image_size/16) # 32,16,8,4
gf_dim = 64
c_dim = FLAGS.c_dim # n_color 3
batch_size = FLAGS.batch_size # 64
w_init = tf.random_normal_initializer(stddev=0.02)
gamma_init = tf.random_normal_initializer(1., 0.02)
with tf.variable_scope("generator", reuse = reuse):
tl.layers.set_name_reuse(reuse)
net_in = InputLayer(inputs, name='g/in')
net_h0 = DenseLayer(net_in, n_units=gf_dim*4*s8*s8, W_init=w_init,
act = tf.identity, name='g/h0/lin')
# net_h0.outputs._shape = (b_size,256*8*8)
net_h0 = ReshapeLayer(net_h0, shape=[-1, s8, s8, gf_dim*4], name='g/h0/reshape')
# net_h0.outputs._shape = (b_size,8,8,256)
net_h0 = BatchNormLayer(net_h0, act=tf.nn.relu, is_train=is_train,
gamma_init=gamma_init, name='g/h0/batch_norm')
# upsampling
net_h1 = DeConv2d(net_h0, gf_dim*4, (5, 5), out_size=(s4, s4), strides=(2, 2),
padding='SAME', batch_size=batch_size, act=None, W_init=w_init, name='g/h1/decon2d')
net_h1 = BatchNormLayer(net_h1, act=tf.nn.relu, is_train=is_train,
gamma_init=gamma_init, name='g/h1/batch_norm')
# net_h1.outputs._shape = (b_size,16,16,256)
net_h2 = DeConv2d(net_h1, gf_dim*2, (5, 5), out_size=(s2, s2), strides=(2, 2),
padding='SAME', batch_size=batch_size, act=None, W_init=w_init, name='g/h2/decon2d')
net_h2 = BatchNormLayer(net_h2, act=tf.nn.relu, is_train=is_train,
gamma_init=gamma_init, name='g/h2/batch_norm')
# net_h2.outputs._shape = (b_size,32,32,128)
net_h3 = DeConv2d(net_h2, gf_dim//2, (5, 5), out_size=(image_size, image_size), strides=(2, 2),
padding='SAME', batch_size=batch_size, act=None, W_init=w_init, name='g/h3/decon2d')
net_h3 = BatchNormLayer(net_h3, act=tf.nn.relu, is_train=is_train,
gamma_init=gamma_init, name='g/h3/batch_norm')
# net_h3.outputs._shape = (b_size,64,64,32)
# no BN on last deconv
net_h4 = DeConv2d(net_h3, c_dim, (5, 5), out_size=(image_size, image_size), strides=(1, 1),
padding='SAME', batch_size=batch_size, act=None, W_init=w_init, name='g/h4/decon2d')
# net_h4.outputs._shape = (b_size,64,64,3)
# net_h4 = Conv2d(net_h3, c_dim, (5,5),(1,1), padding='SAME', W_init=w_init, name='g/h4/conv2d')
logits = net_h4.outputs
net_h4.outputs = tf.nn.tanh(net_h4.outputs)
return net_h4, logits
# net_in = InputLayer(inputs, name='g/in')
# net_h0 = DenseLayer(net_in, n_units=gf_dim*8*s16*s16, W_init=w_init,
# act = tf.identity, name='g/h0/lin')
# # net_h0.outputs._shape = (b_size,512*4*4)
# net_h0 = ReshapeLayer(net_h0, shape=[-1, s16, s16, gf_dim*8], name='g/h0/reshape')
# # net_h0.outputs._shape = (b_size,4,4,512)
# net_h0 = BatchNormLayer(net_h0, act=tf.nn.relu, is_train=is_train,
# gamma_init=gamma_init, name='g/h0/batch_norm')
# # upsampling
# net_h1 = DeConv2d(net_h0, gf_dim*4, (5, 5), out_size=(s8, s8), strides=(2, 2),
# padding='SAME', batch_size=batch_size, act=None, W_init=w_init, name='g/h1/decon2d')
# net_h1 = BatchNormLayer(net_h1, act=tf.nn.relu, is_train=is_train,
# gamma_init=gamma_init, name='g/h1/batch_norm')
# # net_h1.outputs._shape = (b_size,8,8,256)
# net_h2 = DeConv2d(net_h1, gf_dim*2, (5, 5), out_size=(s4, s4), strides=(2, 2),
# padding='SAME', batch_size=batch_size, act=None, W_init=w_init, name='g/h2/decon2d')
# net_h2 = BatchNormLayer(net_h2, act=tf.nn.relu, is_train=is_train,
# gamma_init=gamma_init, name='g/h2/batch_norm')
# # net_h2.outputs._shape = (b_size,16,16,128)
# net_h3 = DeConv2d(net_h2, gf_dim, (5, 5), out_size=(s2, s2), strides=(2, 2),
# padding='SAME', batch_size=batch_size, act=None, W_init=w_init, name='g/h3/decon2d')
# net_h3 = BatchNormLayer(net_h3, act=tf.nn.relu, is_train=is_train,
# gamma_init=gamma_init, name='g/h3/batch_norm')
# # net_h3.outputs._shape = (b_size,32,32,64)
# net_h4 = DeConv2d(net_h3, gf_dim//2, (5, 5), out_size=(image_size, image_size), strides=(2, 2),
# padding='SAME', batch_size=batch_size, act=None, W_init=w_init, name='g/h4/decon2d')
# net_h4 = BatchNormLayer(net_h4, act=tf.nn.relu, is_train=is_train,
# gamma_init=gamma_init, name='g/h4/batch_norm')
# # net_h4.outputs._shape = (b_size,64,64,32)
# # no BN on last deconv
# net_h5 = DeConv2d(net_h4, c_dim, (5, 5), out_size=(image_size, image_size), strides=(1, 1),
# padding='SAME', batch_size=batch_size, act=None, W_init=w_init, name='g/h5/decon2d')
# # net_h4.outputs._shape = (b_size,64,64,3)
# # net_h4 = Conv2d(net_h3, c_dim, (5,5),(1,1), padding='SAME', W_init=w_init, name='g/h4/conv2d')
# logits = net_h5.outputs
# net_h5.outputs = tf.nn.tanh(net_h5.outputs)
# return net_h5, logits