-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path多层感知机.py
162 lines (137 loc) · 4.84 KB
/
多层感知机.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# -*- coding: utf-8 -*-#
'''
@Project : DeepLearning
@File : 多层感知机.py
@USER : ZZZZZ
@TIME : 2021/4/21 11:29
'''
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda, Compose
import matplotlib.pyplot as plt
# ------------------------------------- 加载数据 -------------------------------------
# Download training data from open datasets.
training_data = datasets.FashionMNIST(
root="../Data",
train=True,
download=True,
transform=ToTensor(), # 图像转为tensor
)
# Download test data from open datasets.
test_data = datasets.FashionMNIST(
root="../Data",
train=False,
download=True,
transform=ToTensor(),
)
batch_size = 64
# Create data loaders.
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)
# 检验数据集
for X, y in test_dataloader:
print("Shape of X [N, C, H, W]: ", X.shape)
print("Shape of y: ", y.shape, y.dtype)
break
# ------------------------------------- 创建模型 -------------------------------------
# Get cpu or gpu device for training.
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
# Define model
class NeuralNetwork(nn.Module):
def __init__(self):
# 必须要调用父类的方法
super(NeuralNetwork, self).__init__()
# 将tensor打平操作
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28*28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10),
nn.ReLU()
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
model = NeuralNetwork().to(device)
print("model:", model)
# ------------------------------------- 设置loss -------------------------------------
loss_fn = nn.CrossEntropyLoss()
# ------------------------------------- 反向传播 -------------------------------------
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
# ------------------------------------- 训练模型 -------------------------------------
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
for batch, (X, y) in enumerate(dataloader):
# 显式地将tensor移到cuda上
X, y = X.to(device), y.to(device)
# Compute prediction error
# 前向传播
pred = model(X)
# 计算loss
loss = loss_fn(pred, y)
# Backpropagation
# 把梯度置为0
optimizer.zero_grad()
# 反向传播
loss.backward()
optimizer.step()
# 输出log
if batch % 100 == 0:
# .item() <-> 将tensor转为python变量
loss, current = loss.item(), batch * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
# ------------------------------------- 测试模型 -------------------------------------
def test(dataloader, model):
size = len(dataloader.dataset)
# 不启用 BatchNormalization 和 Dropout
model.eval()
test_loss, correct = 0, 0
# 不要track梯度
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= size
correct /= size
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
if __name__ == "__main__":
epochs = 5
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train(train_dataloader, model, loss_fn, optimizer)
test(test_dataloader, model)
print("Done!")
# ------------------------------------- 保存模型 -------------------------------------
torch.save(model.state_dict(), "model.pth")
print("Saved PyTorch Model State to model.pth")
# ------------------------------------- 加载模型 -------------------------------------
model = NeuralNetwork()
model.load_state_dict(torch.load("model.pth"))
# ------------------------------------- 加载模型测试 -------------------------------------
classes = [
"T-shirt/top",
"Trouser",
"Pullover",
"Dress",
"Coat",
"Sandal",
"Shirt",
"Sneaker",
"Bag",
"Ankle boot",
]
# 不启用 BatchNormalization 和 Dropout
model.eval()
x, y = test_data[0][0], test_data[0][1]
with torch.no_grad():
pred = model(x)
predicted, actual = classes[pred[0].argmax(0)], classes[y]
print(f'Predicted: "{predicted}", Actual: "{actual}"')