forked from nesl/nlp_adversarial_examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild_embeddings.py
46 lines (36 loc) · 1.54 KB
/
build_embeddings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
"""
Author: Moustafa Alzantot (malzantot@ucla.edu)
All rights reserved.
"""
import numpy as np
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
import pickle
import os
#import nltk
import re
from collections import Counter
import data_utils
import glove_utils
IMDB_PATH = 'aclImdb'
MAX_VOCAB_SIZE = 50000
GLOVE_PATH = 'glove.840B.300d.txt'
if not os.path.exists('aux_files'):
os.mkdir('aux_files')
imdb_dataset = data_utils.IMDBDataset(path=IMDB_PATH, max_vocab_size=MAX_VOCAB_SIZE)
# save the dataset
with open(('aux_files/dataset_%d.pkl' %(MAX_VOCAB_SIZE)), 'wb') as f:
pickle.dump(imdb_dataset, f)
# create the glove embeddings matrix (used by the classification model)
glove_model = glove_utils.loadGloveModel(GLOVE_PATH)
glove_embeddings, _ = glove_utils.create_embeddings_matrix(glove_model, imdb_dataset.dict, imdb_dataset.full_dict)
# save the glove_embeddings matrix
np.save('aux_files/embeddings_glove_%d.npy' %(MAX_VOCAB_SIZE), glove_embeddings)
# Load the counterfitted-vectors (used by our attack)
glove2 = glove_utils.loadGloveModel('counter-fitted-vectors.txt')
# create embeddings matrix for our vocabulary
counter_embeddings, missed = glove_utils.create_embeddings_matrix(glove2, imdb_dataset.dict, imdb_dataset.full_dict)
# save the embeddings for both words we have found, and words that we missed.
np.save(('aux_files/embeddings_counter_%d.npy' %(MAX_VOCAB_SIZE)), counter_embeddings)
np.save(('aux_files/missed_embeddings_counter_%d.npy' %(MAX_VOCAB_SIZE)), missed)
print('All done')