forked from nesl/nlp_adversarial_examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
goog_lm.py
94 lines (79 loc) · 3.53 KB
/
goog_lm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
"""
Author: Moustafa Alzantot (malzantot@ucla.edu)
All rights reserved.
"""
import os
import tensorflow as tf
import sys
import numpy as np
from google.protobuf import text_format
import lm_utils
import lm_data_utils
class LM(object):
def __init__(self):
self.PBTXT_PATH = 'goog_lm/graph-2016-09-10.pbtxt'
self.CKPT_PATH = 'goog_lm/ckpt-*'
self.VOCAB_PATH = 'goog_lm/vocab-2016-09-10.txt'
self.BATCH_SIZE = 1
self.NUM_TIMESTEPS = 1
self.MAX_WORD_LEN = 50
self.vocab = lm_data_utils.CharsVocabulary(self.VOCAB_PATH, self.MAX_WORD_LEN)
print('LM vocab loading done')
with tf.device("/gpu:1"):
self.graph = tf.Graph()
self.sess = tf.Session(graph=self.graph)
with self.graph.as_default():
self.t = lm_utils.LoadModel(self.sess, self.graph, self.PBTXT_PATH, self.CKPT_PATH)
def get_words_probs(self, prefix_words, list_words, suffix=None):
targets = np.zeros([self.BATCH_SIZE, self.NUM_TIMESTEPS], np.int32)
weights = np.ones([self.BATCH_SIZE, self.NUM_TIMESTEPS], np.float32)
if prefix_words.find('<S>') != 0:
prefix_words = '<S> ' + prefix_words
prefix = [self.vocab.word_to_id(w) for w in prefix_words.split()]
prefix_char_ids = [self.vocab.word_to_char_ids(w) for w in prefix_words.split()]
inputs = np.zeros([self.BATCH_SIZE, self.NUM_TIMESTEPS], np.int32)
char_ids_inputs = np.zeros([self.BATCH_SIZE, self.NUM_TIMESTEPS, self.vocab.max_word_length], np.int32)
samples = prefix[:]
char_ids_samples = prefix_char_ids[:]
inputs = [ [samples[-1]]]
char_ids_inputs[0, 0, :] = char_ids_samples[-1]
softmax = self.sess.run(self.t['softmax_out'],
feed_dict={
self.t['char_inputs_in']: char_ids_inputs,
self.t['inputs_in']: inputs,
self.t['targets_in']: targets,
self.t['target_weights_in']: weights
})
# print(list_words)
words_ids = [self.vocab.word_to_id(w) for w in list_words]
word_probs =[softmax[0][w_id] for w_id in words_ids]
word_probs = np.array(word_probs)
if suffix == None:
suffix_probs = np.ones(word_probs.shape)
else:
suffix_id = self.vocab.word_to_id(suffix)
suffix_probs = []
for idx, w_id in enumerate(words_ids):
# print('..', list_words[idx])
inputs = [[w_id]]
w_char_ids = self.vocab.word_to_char_ids(list_words[idx])
char_ids_inputs[0, 0, :] = w_char_ids
softmax = self.sess.run(self.t['softmax_out'],
feed_dict={
self.t['char_inputs_in']: char_ids_inputs,
self.t['inputs_in']: inputs,
self.t['targets_in']: targets,
self.t['target_weights_in']: weights
})
suffix_probs.append(softmax[0][suffix_id])
suffix_probs = np.array(suffix_probs)
# print(word_probs, suffix_probs)
return suffix_probs * word_probs
if __name__ == '__main__':
my_lm = LM()
list_words = 'play will playing played afternoon'.split()
prefix = 'i'
suffix = 'yesterday'
probs = (my_lm.get_words_probs(prefix, list_words, suffix))
for i, w in enumerate(list_words):
print(w, ' - ', probs[i])