-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain_mnist_cifar.py
276 lines (253 loc) · 11.9 KB
/
main_mnist_cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import argparse
import torch
import os
import time
from torch.utils.data import DataLoader
from utils import random_seed, create_result_dir, Logger, TableLogger, AverageMeter
parser = argparse.ArgumentParser(description='Optimization')
parser.add_argument('--dataset', default='cifar10(augment)', type=str)
parser.add_argument('--model', default='vgg', type=str)
parser.add_argument('--algo', default='sgd', type=str)
parser.add_argument('--loss', default='cross_entropy', type=str)
parser.add_argument('--epochs', default='50,80,100', type=str)
parser.add_argument('-b', '--batch-size', default=128, type=int)
parser.add_argument('--lr', default=0.1, type=float)
parser.add_argument('--momentum', default=0.9, type=float)
parser.add_argument('--gamma', default=1e-5, type=float)
parser.add_argument('--b0', default=0.0, type=float)
parser.add_argument('--wd', default=1e-4, type=float)
parser.add_argument('--gpu', default=0, type=int, help='GPU id to use')
parser.add_argument('-p', '--print-freq', default=20, type=int,
metavar='N', help='print frequency (default: 20)')
parser.add_argument('--result-dir', default='result/', type=str)
parser.add_argument('--seed', default=2020, type=int, help='seed for initializing training. ')
def parse_dataset(args, batch_size):
"""
args: a string containing dataset type and paras
mnist([augment])
cifar10([augment])
"""
from dataset.dataset import mnist, cifar10, NonAugmentDataLoader
if 'mnist' in args.lower():
train_dataset, test_dataset = mnist('augment' in args.lower())
elif 'cifar10' in args.lower():
train_dataset, test_dataset = cifar10('augment' in args.lower())
else:
raise NotImplementedError
test_loader = None
if not 'augment' in args.lower():
train_loader = NonAugmentDataLoader(train_dataset, batch_size=batch_size, shuffle=True)
if test_dataset is not None:
test_loader = NonAugmentDataLoader(test_dataset, batch_size=65536, shuffle=False)
else:
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4, pin_memory=True)
if test_dataset is not None:
test_loader = DataLoader(test_dataset, batch_size=256, shuffle=False, num_workers=4, pin_memory=True)
return train_dataset, test_dataset, train_loader, test_loader
def parse_model(args, dataset=None):
"""
args: a string containing model type and paras
linear(d, out, [bias], [large_w])
vgg16([bn], [affine], [large_w])
resnet(depth, width, [large_w])
Note: if large_w, the final weight layer will have norm 15 times larger.
"""
from model.vgg_cifar import vgg16
from model.resnet_cifar import resnet_cifar
from model.linear import Linear
if 'linear' in args.lower():
para = ''.join(list(filter((lambda c: str.isdigit(c) or c == ','), args)))
d, out = [int(x) for x in para.split(',')[0:2]]
bias = 'bias' in args.lower()
weight = 15 if 'large_w' in args.lower() else 1
return Linear(d, out=out, bias=bias, weight=weight)
elif 'vgg' in args.lower():
bn = 'bn' in args.lower()
affine = 'affine' in args.lower()
large_w = 'large_w' in args.lower()
return vgg16(bn=bn, affine=affine, large_weight=large_w)
elif 'resnet' in args.lower():
para = ''.join(list(filter((lambda c: str.isdigit(c) or c == ','), args)))
depth, width = [int(x) for x in para.split(',')[0:2]]
large_w = 'large_w' in args.lower()
return resnet_cifar(depth=depth, width_factor=width, affine=True, large_weight=large_w)
else:
raise NotImplementedError
def parse_algo(args, model, **kwargs):
"""
args: a string containing algorithm type and paras
sgd
sgd_clip([layer])
normalized_sgd([layer])
adagrad([element], [layer])
qhm_clip([layer])
Note: if [layer], grad normalization is applied layerwise.
Here every submodel with direct parameters is considered a layer.
"""
from algorithm import Algorithm, SGD, SGDClip, NormalizedSGD, Adagrad, MomClip, MixClip
if 'layer' in args.lower():
modules = model.modules()
net_paras = [m.parameters(recurse=False) for m in modules]
net_paras = dict([('params', para) for para in net_paras if len(para) > 0])
else:
net_paras = model.parameters()
para = ('wd', 'lr', 'momentum', 'gamma')
if 'normalized_sgd' in args.lower():
algo = NormalizedSGD
para = ('wd', 'lr', 'momentum')
elif 'sgd_clip' in args.lower():
algo = SGDClip
para = ('wd', 'lr', 'momentum', 'gamma')
elif 'mom_clip' in args.lower():
algo = MomClip
para = ('wd', 'lr', 'momentum', 'gamma')
elif 'sgd' in args.lower():
algo = SGD
para = ('wd', 'lr', 'momentum')
elif 'adagrad' in args.lower():
algo = Adagrad
para = ('wd', 'lr', 'b0')
elif 'mix_clip' in args.lower():
algo = MixClip
para = ('wd', 'lr', 'momentum', 'gamma')
else:
raise NotImplementedError
return Algorithm(net_paras, algo, **{key: kwargs[key] for key in para})
def parse_loss(args):
"""
args: exp, exp_multi, or cross_entropy
regularization can be incorporated into loss 'exp' or 'exp_multi' using
exp(1e-2) for example
"""
from torch.nn.functional import cross_entropy
from functools import partial
import re
def cross_entropy_no_wd(outputs, targets, weights):
return cross_entropy(outputs, targets)
def exp_wd(outputs, targets, weights, wd):
return torch.exp(-outputs.view(-1) * targets).mean() + \
sum([(torch.exp(wd * w) - 1).sum() + (torch.exp(-wd * w) - 1).sum() for w in weights]) / 2
def exp_multi_wd(outputs, targets, weights, wd):
neg_one = -torch.ones_like(outputs, device=outputs.device, dtype=outputs.dtype)
return torch.exp(-outputs * neg_one.scatter_(1, targets.view(-1, 1), 1)).sum(dim=1).mean() + \
sum([(torch.exp(wd * w) - 1).sum() + (torch.exp(-wd * w) - 1).sum() for w in weights]) / 2
if 'exp_multi' in args.lower():
matchObj = re.match('exp_multi\((.*)\)', args)
if matchObj is not None:
wd = float(matchObj.group(1))
else: wd = 0
return partial(exp_multi_wd, wd=wd)
elif 'exp' in args.lower():
matchObj = re.match('exp_multi\((.*)\)', args)
if matchObj is not None:
wd = float(matchObj.group(1))
else: wd = 0
return partial(exp_wd, wd=wd)
elif 'cross_entropy' in args.lower():
return cross_entropy_no_wd
else:
raise NotImplementedError
def parse_epochs(args):
return [int(epoch) for epoch in args.split(',')]
def adjust_lr(lr, gamma, epochs, epoch, optimizer):
import bisect
index = bisect.bisect_right(epochs, epoch)
lr_now = lr / (10 ** index)
gamma_row = gamma / (10 ** index)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_now
if 'gamma' in param_group:
param_group['gamma'] = gamma_row
def cal_acc(outputs, targets):
if outputs.size(1) == 1:
return (outputs.view(-1) * targets > 0).float().mean()
predicted = torch.max(outputs.data, 1)[1]
return (predicted == targets).float().mean()
def train(net, loss_fun, epoch, trainloader, optimizer, logger, train_logger, gpu, print_freq):
logger.print('Epoch %d training start' % (epoch))
net.train()
batch_time, data_time, losses, accs = [AverageMeter() for _ in range(4)]
start = time.time()
train_loader_len = len(trainloader)
for batch_idx, (inputs, targets) in enumerate(trainloader):
data_time.update(time.time() - start)
inputs = inputs.cuda(gpu, non_blocking=True)
targets = targets.cuda(gpu, non_blocking=True)
outputs = net(inputs)
loss = loss_fun(outputs, targets, net.parameters())
with torch.no_grad():
losses.update(loss.data.item(), targets.size(0))
accs.update(cal_acc(outputs.data, targets).mean().item(), targets.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time() - start)
if (batch_idx + 1) % print_freq == 0:
logger.print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.6f} ({loss.avg:.6f})\t'
'Acc {acc.val:.4f} ({acc.avg:.4f})\t'.format(
epoch, batch_idx + 1, train_loader_len,
batch_time=batch_time, data_time=data_time, loss=losses, acc=accs))
start = time.time()
loss, acc = losses.avg, accs.avg
train_logger.log({'epoch': epoch, 'loss': loss, 'acc': acc})
logger.print('Epoch %d:' % (epoch) + 'train' + " loss: " + f'{loss:.6f}' + " acc: " + f'{acc:.4f}')
@torch.no_grad()
def test(net, loss_fun, epoch, testloader, logger, test_logger, gpu, print_freq):
net.eval()
batch_time, data_time, losses, accs = [AverageMeter() for _ in range(4)]
start = time.time()
with torch.no_grad():
test_loader_len = len(testloader)
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs = inputs.cuda(gpu, non_blocking=True)
targets = targets.cuda(gpu, non_blocking=True)
outputs = net(inputs)
loss = loss_fun(outputs, targets, net.parameters())
losses.update(loss.mean().item(), targets.size(0))
accs.update(cal_acc(outputs, targets).item(), targets.size(0))
batch_time.update(time.time() - start)
start = time.time()
if (batch_idx + 1) % print_freq == 0:
logger.print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.6f} ({loss.avg:.6f})\t'
'Acc {acc.val:.4f} ({acc.avg:.4f})\t'.format(
batch_idx + 1, test_loader_len, batch_time=batch_time, loss=losses, acc=accs))
loss, acc = losses.avg, accs.avg
test_logger.log({'epoch': epoch, 'loss': loss, 'acc': acc})
logger.print("Epoch %d: " % (epoch) + 'test' + " loss: " + f'{loss:.6f}' + " acc: " + f'{acc:.4f}')
def main_worker(gpu, args, result_dir):
torch.backends.cudnn.benchmark = True
random_seed(args.seed)
torch.cuda.set_device(gpu)
train_dataset, test_dataset, train_loader, test_loader = parse_dataset(args.dataset, args.batch_size)
model = parse_model(args.model, train_dataset)
model = model.cuda(gpu)
print('number of prarmeters:', sum([p.numel() for p in model.parameters()]))
optimizer = parse_algo(args.algo, model, wd=args.wd,
lr=args.lr, momentum=args.momentum, gamma=args.gamma, b0=args.b0)
loss = parse_loss(args.loss)
epochs = parse_epochs(args.epochs)
logger = Logger(os.path.join(result_dir, 'log.txt'))
for arg in vars(args):
logger.print(arg, '=', getattr(args, arg))
train_logger = TableLogger(os.path.join(result_dir, 'train.log'), ['epoch', 'loss', 'acc'])
test_logger = TableLogger(os.path.join(result_dir, 'test.log'), ['epoch', 'loss', 'acc'])
for epoch in range(0, epochs[-1]):
adjust_lr(args.lr, args.gamma, epochs, epoch, optimizer)
train(model, loss, epoch, train_loader, optimizer, logger, train_logger, gpu, args.print_freq)
if test_dataset is not None:
test(model, loss, epoch, test_loader, logger, test_logger, gpu, args.print_freq)
def main(father_handle, **extra_argv):
args = parser.parse_args()
for key,val in extra_argv.items():
setattr(args, key, val)
result_dir = create_result_dir(args)
if father_handle is not None:
father_handle.put(result_dir)
main_worker(args.gpu, args, result_dir)
if __name__ == '__main__':
main(None)