-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.sh
78 lines (68 loc) · 1.73 KB
/
main.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#!/bin/bash
mode='train'
dataset_name='cub' # 'awa', 'awa2', 'apy', 'sun'
resume='pass'
n_iteration=5000
batch_size=64
lr_G=1e-3
lr_D=1e-3
lr_R=1e-3
weight_decay=1e-2
optimizer='adam'
labelIdxStart0or1=1
root_dir='../data'
save_dir='./checkpoint'
all_visualFea_label_file='res101.mat'
auxiliary_file='att_splits.mat'
use_z='true'
z_dim=100
gpuid=1
centroid_lambda=1
_lambda=0.00015
gp_lambda=10
regression_lambda=1
n_iter_D=1
n_iter_G=5
n_generation_perClass=50
classifier_type='softmax'
n_epoch_sftcls=100
use_pca='false'
reduced_dim_pca=1024
use_od='false'
miu=1.2 # for "adaptive outlier detection", miu >= 1
od_lambda=0.05 # the trade-off hyperparameter for cosine loss in "adaptive outlier detection"
MI_lambda=1e-6 # the trade-off hyperparameter for MMICC loss
python main.py \
--mode ${mode} \
--dataset_name ${dataset_name} \
--resume ${resume} \
--n_iteration ${n_iteration} \
--batch_size ${batch_size} \
--lr_G ${lr_G} \
--lr_D ${lr_D} \
--lr_R ${lr_R} \
--weight_decay ${weight_decay} \
--optimizer ${optimizer} \
--labelIdxStart0or1 ${labelIdxStart0or1} \
--root_dir ${root_dir} \
--save_dir ${save_dir} \
--all_visualFea_label_file ${all_visualFea_label_file} \
--auxiliary_file ${auxiliary_file} \
--use_z ${use_z} \
--z_dim ${z_dim} \
--gpuid ${gpuid} \
--centroid_lambda ${centroid_lambda} \
--_lambda ${_lambda} \
--gp_lambda ${gp_lambda} \
--regression_lambda ${regression_lambda} \
--n_iter_D ${n_iter_D} \
--n_iter_G ${n_iter_G} \
--n_generation_perClass ${n_generation_perClass} \
--classifier_type ${classifier_type} \
--n_epoch_sftcls ${n_epoch_sftcls} \
--use_pca ${use_pca} \
--reduced_dim_pca ${reduced_dim_pca} \
--use_od ${use_od} \
--miu ${miu} \
--od_lambda ${od_lambda} \
--MI_lambda ${MI_lambda}