-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain_AwA1.sh
73 lines (62 loc) · 1.79 KB
/
main_AwA1.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#!/bin/bash
### dataset specific config >>>>>>>>>
dataset_name='awa'
resume='pass'
weight_threshold=0.2
gan_checkpoint='checkpoint_awa_iter8401accUnseen57.34_accSeen72.49.pkl'
### dataset specific config <<<<<<<<<
### shared config >>>>>>>>>
mode='train'
gpuid=1
n_iteration=7000 # 7000 iterations are enough for AwA1 dataset.
batch_size=512
lr=0.0005 # 0.0001、 0.001、 0.01 are bad, 0.0005 is the right initial learning rate!
weight_decay=1e-2
optimizer='adam'
labelIdxStart0or1=1
root_dir='./data'
graph_datadir='./data/preprocessed_data'
save_dir='./checkpoints'
all_visualFea_label_file='res101.mat'
auxiliary_file='original_att_splits.mat'
use_z='true'
z_dim=100
n_generation_perClass=50
classifier_type='softmax'
n_epoch_sftcls=100
use_pca='false'
reduced_dim_pca=1024
gan_checkpoint_dir='./gan_checkpoints'
print_every=10
eval_every=100
n_gene_perC=40
### shared config <<<<<<<<<
python main.py \
--mode ${mode} \
--dataset_name ${dataset_name} \
--resume ${resume} \
--n_iteration ${n_iteration} \
--batch_size ${batch_size} \
--lr ${lr} \
--weight_decay ${weight_decay} \
--optimizer ${optimizer} \
--labelIdxStart0or1 ${labelIdxStart0or1} \
--root_dir ${root_dir} \
--graph_datadir ${graph_datadir} \
--save_dir ${save_dir} \
--all_visualFea_label_file ${all_visualFea_label_file} \
--auxiliary_file ${auxiliary_file} \
--gpuid ${gpuid} \
--n_generation_perClass ${n_generation_perClass} \
--classifier_type ${classifier_type} \
--n_epoch_sftcls ${n_epoch_sftcls} \
--use_pca ${use_pca} \
--reduced_dim_pca ${reduced_dim_pca} \
--weight_threshold ${weight_threshold} \
--gan_checkpoint_dir ${gan_checkpoint_dir} \
--gan_checkpoint ${gan_checkpoint} \
--use_z ${use_z} \
--z_dim ${z_dim} \
--print_every ${print_every} \
--eval_every ${eval_every} \
--n_gene_perC ${n_gene_perC} \