-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_sfold_stage2.py
262 lines (234 loc) · 17.1 KB
/
train_sfold_stage2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import argparse
import os,glob
from datasets.siim import get_loader
from torch.backends import cudnn
import random
import json,codecs
from pprint import pprint
from utils.mask_functions import write_txt
from utils.datasets_statics import DatasetsStatic
from argparse import Namespace
from sklearn.model_selection import KFold, StratifiedKFold
import numpy as np
import pickle
from datetime import datetime
from solver import Train
def main(config):
cudnn.benchmark = True
config.save_path = config.model_path + '/' + config.model_type
if not os.path.exists(config.save_path):
print('Making pth folder...')
os.makedirs(config.save_path)
# 打印配置参数,并输出到文件中
pprint(config)
if 'choose_threshold' not in config.mode:
TIMESTAMP = "{0:%Y-%m-%dT%H-%M-%S}".format(datetime.now())
with codecs.open(config.save_path + '/'+ TIMESTAMP + '.json', 'w', "utf-8") as json_file:
json.dump({k: v for k, v in config._get_kwargs()}, json_file, ensure_ascii=False)
# write_txt(config.save_path, {k: v for k, v in config._get_kwargs()})
# 存储每一次交叉验证的最高得分,最优阈值
scores, best_thrs, best_pixel_thrs = [], [], []
# 统计各样本是否有Mask
if os.path.exists('dataset_static.pkl'):
print('Extract dataset static information form: dataset_static.pkl.')
with open('dataset_static.pkl', 'rb') as f:
static = pickle.load(f)
images_path, masks_path, masks_bool = static[0], static[1], static[2]
else:
print('Calculate dataset static information.')
# 为了确保每次重新运行,交叉验证每折选取的下标均相同(因为要选阈值),以及交叉验证的种子固定。
dataset_static = DatasetsStatic(config.dataset_root, 'test_images', 'test_mask', True)
images_path, masks_path, masks_bool = dataset_static.mask_static_bool()
with open('dataset_static.pkl', 'wb') as f:
pickle.dump([images_path, masks_path, masks_bool], f)
# 统计各样本是否有Mask
if os.path.exists('dataset_static_mask.pkl'):
print('Extract dataset static information form: dataset_static_mask.pkl.')
with open('dataset_static_mask.pkl', 'rb') as f:
static_mask = pickle.load(f)
images_path_mask, masks_path_mask, masks_bool_mask = static_mask[0], static_mask[1], static_mask[2]
else:
print('Calculate dataset with mask static information.')
# 为了确保每次重新运行,交叉验证每折选取的下标均相同(因为要选阈值),以及交叉验证的种子固定。
dataset_static_mask = DatasetsStatic(config.dataset_root, 'test_images', 'test_mask', True)
images_path_mask, masks_path_mask, masks_bool_mask = dataset_static_mask.mask_static_bool_stage3()
with open('dataset_static_mask.pkl', 'wb') as f:
pickle.dump([images_path_mask, masks_path_mask, masks_bool_mask], f)
# 统计各样本是否有Mask
if os.path.exists('dataset_static_stage1.pkl'):
print('Extract dataset static information form: dataset_static_stage1.pkl.')
with open('dataset_static_stage1.pkl', 'rb') as f:
static_stage1 = pickle.load(f)
images_path_stage1, masks_path_stage1, masks_bool_stage1 = static_stage1[0], static_stage1[1], static_stage1[2]
else:
print('Calculate dataset static information.')
# 为了确保每次重新运行,交叉验证每折选取的下标均相同(因为要选阈值),以及交叉验证的种子固定。
dataset_static_stage1 = DatasetsStatic(config.dataset_root, 'train_images', 'train_mask', True)
images_path_stage1, masks_path_stage1, masks_bool_stage1 = dataset_static_stage1.mask_static_bool()
with open('dataset_static_stage1.pkl', 'wb') as f:
pickle.dump([images_path_stage1, masks_path_stage1, masks_bool_stage1], f)
# 统计各样本是否有Mask
if os.path.exists('dataset_static_mask_stage1.pkl'):
print('Extract dataset static information form: dataset_static_mask_stage1.pkl.')
with open('dataset_static_mask_stage1.pkl', 'rb') as f:
static_mask_stage1 = pickle.load(f)
images_path_mask_stage1, masks_path_mask_stage1, masks_bool_mask_stage1 = static_mask_stage1[0], static_mask_stage1[1], static_mask_stage1[2]
else:
print('Calculate dataset with mask static information.')
# 为了确保每次重新运行,交叉验证每折选取的下标均相同(因为要选阈值),以及交叉验证的种子固定。
dataset_static_mask_stage1 = DatasetsStatic(config.dataset_root, 'train_images', 'train_mask', True)
images_path_mask_stage1, masks_path_mask_stage1, masks_bool_mask_stage1 = dataset_static_mask_stage1.mask_static_bool_stage3()
with open('dataset_static_mask_stage1.pkl', 'wb') as f:
pickle.dump([images_path_mask_stage1, masks_path_mask_stage1, masks_bool_mask_stage1], f)
result = {}
skf = StratifiedKFold(n_splits=config.n_splits, shuffle=True, random_state=1)
split1, split2 = skf.split(images_path, masks_bool), skf.split(images_path_mask, masks_bool_mask)
split1_stage1, split2_stage1 = skf.split(images_path_stage1, masks_bool_stage1), skf.split(images_path_mask_stage1, masks_bool_mask_stage1)
for index, ((train_index, val_index), (train_index_mask, val_index_mask), (train_index_stage1, val_index_stage1), (train_index_mask_stage1, val_index_mask_stage1)) in enumerate(zip(split1, split2, split1_stage1, split2_stage1)):
# if index > 1: if index < 2 or index > 3: if index < 4:
# 不管是选阈值还是训练,均需要对下面几句话进行调整,来选取测试哪些fold。另外,选阈值的时候,也要对choose_threshold参数更改(是否使用best)
# if index != 0:
# print("Fold {} passed".format(index))
# continue
# 比赛第一阶段测试集划分
train_image = [images_path[x] for x in train_index]
train_mask = [masks_path[x] for x in train_index]
val_image = [images_path[x] for x in val_index]
val_mask = [masks_path[x] for x in val_index]
train_image_mask = [images_path_mask[x] for x in train_index_mask]
train_mask_mask = [masks_path_mask[x] for x in train_index_mask]
val_image_mask = [images_path_mask[x] for x in val_index_mask]
val_mask_mask = [masks_path_mask[x] for x in val_index_mask]
# 比赛第一阶段训练集的划分
train_image_stage1 = [images_path_stage1[x] for x in train_index_stage1]
train_mask_stage1 = [masks_path_stage1[x] for x in train_index_stage1]
val_image_stage1 = [images_path_stage1[x] for x in val_index_stage1]
val_mask_stage1 = [masks_path_stage1[x] for x in val_index_stage1]
train_image_mask_stage1 = [images_path_mask_stage1[x] for x in train_index_mask_stage1]
train_mask_mask_stage1 = [masks_path_mask_stage1[x] for x in train_index_mask_stage1]
val_image_mask_stage1 = [images_path_mask_stage1[x] for x in val_index_mask_stage1]
val_mask_mask_stage1 = [masks_path_mask_stage1[x] for x in val_index_mask_stage1]
# 对于第一个阶段方法的处理
train_loader, val_loader = get_loader(train_image_stage1 + train_image, train_mask_stage1 + train_mask, val_image_stage1 + val_image, val_mask_stage1 + val_mask, config.image_size_stage1,
config.batch_size_stage1, config.num_workers, config.stage1_augmentation_flag, weights_sample=config.weight_sample)
solver = Train(config, train_loader, val_loader)
# 针对不同mode,在第一阶段的处理方式
if config.mode == 'train' or config.mode == 'train_stage1':
solver.train(index)
elif config.mode == 'choose_threshold1':
best_thr, best_pixel_thr, score = solver.choose_threshold(os.path.join(config.save_path, '%s_%d_%d_best.pth' % (config.model_type, 1, index)), index)
scores.append(score)
best_thrs.append(best_thr)
best_pixel_thrs.append(best_pixel_thr)
result[str(index)] = [best_thr, best_pixel_thr, score]
del train_loader, val_loader
# 对于第二个阶段的处理方法
train_loader_stage2, val_loader_stage2 = get_loader(train_image_stage1 + train_image, train_mask_stage1 + train_mask, val_image_stage1 + val_image, val_mask_stage1 + val_mask, config.image_size_stage2,
config.batch_size_stage2, config.num_workers, config.stage2_augmentation_flag, weights_sample=config.weight_sample)
# 更新类的训练集以及验证集
solver.train_loader, solver.valid_loader = train_loader_stage2, val_loader_stage2
# 针对不同mode,在第二阶段的处理方式
if config.mode == 'train' or config.mode == 'train_stage2' or config.mode == 'train_stage23':
solver.train_stage2(index)
# solver.get_dice_onval(os.path.join(config.save_path, '%s_%d_%d_best.pth' % (config.model_type, 2, index)), 0.67, 2048)
elif config.mode == 'choose_threshold2':
# solver.pred_mask_count(os.path.join(config.save_path, '%s_%d_%d_best.pth' % (config.model_type, 2, index)), masks_bool, val_index, 0.80, 1280)
best_thr, best_pixel_thr, score = solver.choose_threshold_grid(os.path.join(config.save_path, '%s_%d_%d_best.pth' % (config.model_type, 2, index)), index)
scores.append(score)
best_thrs.append(best_thr)
best_pixel_thrs.append(best_pixel_thr)
result[str(index)] = [best_thr, best_pixel_thr, score]
del train_loader_stage2, val_loader_stage2
# 对于第三个阶段的处理方法
# 第三阶段和第二阶段使用的图片大小一致,最大batch_size一致
train_loader_stage3, val_loader_stage3 = get_loader(train_image_mask_stage1 + train_image_mask, train_mask_mask_stage1 + train_mask_mask, val_image_mask_stage1 + val_image_mask, val_mask_mask_stage1 + val_mask_mask, config.image_size_stage2,
config.batch_size_stage2, config.num_workers, config.stage3_augmentation_flag, weights_sample=config.weight_sample)
# 更新类的训练集以及验证集
solver.train_loader, solver.valid_loader = train_loader_stage3, val_loader_stage3
# 针对不同mode,在第三阶段的处理方式
if config.mode == 'train' or config.mode == 'train_stage3' or config.mode == 'train_stage23':
solver.train_stage3(index)
# solver.get_dice_onval(os.path.join(config.save_path, '%s_%d_%d_best.pth' % (config.model_type, 3, index)), 0.67, 2048)
elif config.mode == 'choose_threshold3':
# solver.pred_mask_count(os.path.join(config.save_path, '%s_%d_%d_best.pth' % (config.model_type, 3, index)), masks_bool_mask, val_index_mask, 0.67, 0)
best_thr, best_pixel_thr, score = solver.choose_threshold(os.path.join(config.save_path, '%s_%d_%d_best.pth' % (config.model_type, 3, index)), index)
scores.append(score)
best_thrs.append(best_thr)
best_pixel_thrs.append(best_pixel_thr)
result[str(index)] = [best_thr, best_pixel_thr, score]
# 若为选阈值操作,则输出n_fold折验证集结果的平均值
if 'choose_threshold' in config.mode:
score_mean = np.array(scores).mean()
thr_mean = np.array(best_thrs).mean()
pixel_thr_mean = np.array(best_pixel_thrs).mean()
print('score_mean:{}, thr_mean:{}, pixel_thr_mean:{}'.format(score_mean, thr_mean, pixel_thr_mean))
result['mean'] = [float(thr_mean), float(pixel_thr_mean), float(score_mean)]
with codecs.open(config.save_path + '/result_stage{}.json'.format(config.mode[-1]), 'w', "utf-8") as json_file:
json.dump(result, json_file, ensure_ascii=False)
print('save the result')
if __name__ == '__main__':
use_paras = False
if use_paras:
with open('./checkpoint/unet_resnet34/' + "params.json", 'r', encoding='utf-8') as json_file:
config = json.load(json_file)
# dict to namespace
config = Namespace(**config)
else:
parser = argparse.ArgumentParser()
'''
第一阶段为768,第二阶段为1024,unet_resnet34时各个电脑可以设置的最大batch size
zdaiot:10,6 z840:12,6 mxq:20,10
'''
parser.add_argument('--image_size_stage1', type=int, default=768, help='image size in the first stage')
parser.add_argument('--batch_size_stage1', type=int, default=12, help='batch size in the first stage')
parser.add_argument('--epoch_stage1', type=int, default=40, help='How many epoch in the first stage')
parser.add_argument('--epoch_stage1_freeze', type=int, default=0, help='How many epoch freezes the encoder layer in the first stage')
parser.add_argument('--image_size_stage2', type=int, default=1024, help='image size in the second stage')
parser.add_argument('--batch_size_stage2', type=int, default=6, help='batch size in the second stage')
parser.add_argument('--epoch_stage2', type=int, default=15, help='How many epoch in the second stage')
parser.add_argument('--epoch_stage2_accumulation', type=int, default=0, help='How many epoch gradients accumulate in the second stage')
parser.add_argument('--accumulation_steps', type=int, default=10, help='How many steps do you add up to the gradient in the second stage')
parser.add_argument('--epoch_stage3', type=int, default=10, help='How many epoch in the third stage')
parser.add_argument('--epoch_stage3_accumulation', type=int, default=0, help='How many epoch gradients accumulate in the third stage')
parser.add_argument('--stage1_augmentation_flag', type=bool, default=True, help='if true, use augmentation method in stage1 train set')
parser.add_argument('--stage2_augmentation_flag', type=bool, default=True, help='if true, use augmentation method in stage2 train set')
parser.add_argument('--stage3_augmentation_flag', type=bool, default=True, help='if true, use augmentation method in stage3 train set')
parser.add_argument('--n_splits', type=int, default=5, help='n_splits_fold')
# model set
parser.add_argument('--resume', type=str, default='', help='if has value, must be the name of Weight file.')
'''mode可选值 没有考虑各自阶段训练到一半重新加载的情况,因为学习率为余弦衰减,不可控 TODO
train: 训练所有阶段, resume必须为空
train_stage1: 只训练第一阶段, resume必须为空
train_stage2: 只训练第二阶段,resume不能为空
train_stage3: 只训练第三阶段,resume不能为空
train_stage23: 只训练第二和第三阶段,resume不能为空
choose_threshold1: 只选第一阶段的阈值
choose_threshold2: 只选第二阶段的阈值
choose_threshold3: 只选第三阶段的阈值
'''
parser.add_argument('--mode', type=str, default='train', \
help='train/train_stage1/train_stage2/train_stage3/train_stage23/choose_threshold1/choose_threshold2/choose_threshold3.')
parser.add_argument('--model_type', type=str, default='unet_resnet34', \
help='U_Net/R2U_Net/AttU_Net/R2AttU_Net/unet_resnet34/linknet/deeplabv3plus/pspnet_resnet34/unet_se_resnext50_32x4d/unet_densenet121')
# model hyper-parameters
parser.add_argument('--t', type=int, default=3, help='t for Recurrent step of R2U_Net or R2AttU_Net')
parser.add_argument('--img_ch', type=int, default=3)
parser.add_argument('--output_ch', type=int, default=1)
parser.add_argument('--num_workers', type=int, default=8)
parser.add_argument('--lr', type=float, default=2e-4, help='init lr in stage1')
parser.add_argument('--lr_stage2', type=float, default=5e-6, help='init lr in stage2')
parser.add_argument('--lr_stage3', type=float, default=1e-7, help='init lr in stage3')
parser.add_argument('--weight_decay', type=float, default=0, help='weight_decay in optimizer')
# dataset
parser.add_argument('--model_path', type=str, default='./checkpoints')
parser.add_argument('--dataset_root', type=str, default='./datasets/SIIM_data')
parser.add_argument('--train_path', type=str, default='./datasets/SIIM_data/train_images_all')
parser.add_argument('--mask_path', type=str, default='./datasets/SIIM_data/train_mask_all')
parser.add_argument('--weight_sample', type=list, default=0, help='sample weight of class')
config = parser.parse_args()
# config = {k: v for k, v in args._get_kwargs()}
if config.mode == 'train_stage2' or config.mode == 'train_stage3' or config.mode == 'train_stage23':
assert config.resume != ''
elif config.mode == 'train' or config.mode == 'train_stage1':
assert config.resume == ''
main(config)