-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
105 lines (88 loc) · 3.71 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import torch
import torch.nn as nn
from torch.autograd import Variable
from collections import OrderedDict
def summary(model, input_size, print_fn=None):
def register_hook(module):
def hook(module, input, output):
class_name = str(module.__class__).split('.')[-1].split("'")[0]
module_idx = len(summary)
m_key = '%s-%i' % (class_name, module_idx+1)
summary[m_key] = OrderedDict()
summary[m_key]['input_shape'] = list(input[0].size())
summary[m_key]['input_shape'][0] = -1
if isinstance(output, (list,tuple)):
summary[m_key]['output_shape'] = [[-1] + list(o.size())[1:] for o in output]
else:
summary[m_key]['output_shape'] = list(output.size())
summary[m_key]['output_shape'][0] = -1
params = 0
if hasattr(module, 'weight'):
params += torch.prod(torch.LongTensor(list(module.weight.size())))
summary[m_key]['trainable'] = module.weight.requires_grad
if hasattr(module, 'bias') and hasattr(module.bias, 'size'):
params += torch.prod(torch.LongTensor(list(module.bias.size())))
summary[m_key]['nb_params'] = params
if (not isinstance(module, nn.Sequential) and
not isinstance(module, nn.ModuleList) and
not (module == model)):
hooks.append(module.register_forward_hook(hook))
if torch.cuda.is_available():
dtype = torch.cuda.FloatTensor
else:
dtype = torch.FloatTensor
if print_fn is None:
print_fn = print
# check if there are multiple inputs to the network
if isinstance(input_size[0], (list, tuple)):
x = [Variable(torch.rand(1,*in_size)).type(dtype) for in_size in input_size]
else:
x = Variable(torch.rand(1,*input_size)).type(dtype)
# print(type(x[0]))
# create properties
summary = OrderedDict()
hooks = []
# register hook
model.apply(register_hook)
# make a forward pass
# print(x.shape)
model(x)
# remove these hooks
for h in hooks:
h.remove()
print_fn('----------------------------------------------------------------')
line_new = '{:>20} {:>25} {:>15}'.format('Layer (type)', 'Output Shape', 'Param #')
print_fn(line_new)
print_fn('================================================================')
total_params = 0
trainable_params = 0
for layer in summary:
# input_shape, output_shape, trainable, nb_params
line_new = '{:>20} {:>25} {:>15}'.format(layer, str(summary[layer]['output_shape']), summary[layer]['nb_params'])
total_params += summary[layer]['nb_params']
if 'trainable' in summary[layer]:
if summary[layer]['trainable'] == True:
trainable_params += summary[layer]['nb_params']
print_fn(line_new)
print_fn('================================================================')
print_fn('Total params: ' + str(total_params))
print_fn('Trainable params: ' + str(trainable_params))
print_fn('Non-trainable params: ' + str(total_params - trainable_params))
print_fn('----------------------------------------------------------------')
# return summary
class AverageMeter(object):
"""Computes and stores the average and current value
Imported from https://github.com/pytorch/examples/blob/master/imagenet/main.py#L247-L262
"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count