-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathgraphencoder.py
67 lines (51 loc) · 2.23 KB
/
graphencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#python3
import numpy as np
import argparse
from tqdm import tqdm
from sklearn.datasets import load_wine
from sklearn import preprocessing
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.metrics.cluster import normalized_mutual_info_score
from torch import nn, optim
import torch
from model import GraphEncoder
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='wine', help='Dataset to use')
parser.add_argument('-l', '--layers', nargs='+', type=int, default=[128, 64, 128], help='Sparsity Penalty Parameter')
parser.add_argument('-b', '--beta', type=float, default=0.01, help='Sparsity Penalty Parameter')
parser.add_argument('-p', '--rho', type=float, default=0.5, help='Prior rho')
parser.add_argument('-lr', type=float, default=0.01, help='Learning Rate')
parser.add_argument('-epoch', type=int, default=200, help='Number of Training Epochs')
parser.add_argument('-device', type=str, default='gpu', help='Train on GPU or CPU')
args = parser.parse_args()
device = torch.device('cuda' if args.device == 'gpu' else 'cpu')
def main():
if args.dataset.lower() == 'wine':
data = load_wine()
else:
raise Exception('Invalid dataset specified')
X = data.data
Y = data.target
k = len(np.unique(Y))
min_max_scaler = preprocessing.MinMaxScaler()
X = min_max_scaler.fit_transform(X)
# Obtain Similarity matrix
S = cosine_similarity(X, X)
D = np.diag(1.0 / np.sqrt(S.sum(axis=1)))
X_train = torch.tensor(D.dot(S).dot(D)).float().to(device)
layers = [len(X_train)] + args.layers + [len(X_train)]
model = GraphEncoder(layers, k).to(device)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
with tqdm(total=args.epoch) as tq:
for epoch in range(1, args.epoch + 1):
optimizer.zero_grad()
X_hat = model(X_train)
loss = model.loss(X_hat, X_train, args.beta, args.rho)
nmi = normalized_mutual_info_score(model.get_cluster(), Y, average_method='arithmetic')
loss.backward()
optimizer.step()
tq.set_postfix(loss='{:.3f}'.format(loss), nmi='{:.3f}'.format(nmi))
tq.update()
print(model.get_cluster())
if __name__ == '__main__':
main()