-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSCALE.py
executable file
·170 lines (144 loc) · 6.81 KB
/
SCALE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#!/usr/bin/env python
"""
# Author: Xiong Lei
# Created Time : Sat 28 Apr 2018 08:31:29 PM CST
# File Name: SCALE.py
# Description: Single-Cell ATAC-seq Analysis via Latent feature Extraction.
Input:
scATAC-seq data
Output:
1. latent feature
2. cluster assignment
3. imputation data
"""
import time
import torch
import numpy as np
import pandas as pd
import os
import scanpy as sc
import argparse
from scale import SCALE
from scale.dataset import load_dataset
from scale.utils import read_labels, cluster_report, estimate_k, binarization
from scale.plot import plot_embedding
from sklearn.preprocessing import MaxAbsScaler
from sklearn.cluster import KMeans
from torch.utils.data import DataLoader
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='SCALE: Single-Cell ATAC-seq Analysis via Latent feature Extraction')
parser.add_argument('--data_list', '-d', type=str, nargs='+', default=[])
parser.add_argument('--n_centroids', '-k', type=int, help='cluster number', default=30)
parser.add_argument('--outdir', '-o', type=str, default='output/', help='Output path')
parser.add_argument('--verbose', action='store_true', help='Print loss of training process')
parser.add_argument('--pretrain', type=str, default=None, help='Load the trained model')
parser.add_argument('--lr', type=float, default=0.0002, help='Learning rate')
parser.add_argument('--batch_size', '-b', type=int, default=32, help='Batch size')
parser.add_argument('--gpu', '-g', default=0, type=int, help='Select gpu device number when training')
parser.add_argument('--seed', type=int, default=18, help='Random seed for repeat results')
parser.add_argument('--encode_dim', type=int, nargs='*', default=[1024, 128], help='encoder structure')
parser.add_argument('--decode_dim', type=int, nargs='*', default=[], help='encoder structure')
parser.add_argument('--latent', '-l',type=int, default=10, help='latent layer dim')
parser.add_argument('--min_peaks', type=float, default=100, help='Remove low quality cells with few peaks')
parser.add_argument('--min_cells', type=float, default=0.01, help='Remove low quality peaks')
parser.add_argument('--n_feature', type=int, default=30000, help='Keep the number of highly variable peaks')
parser.add_argument('--log_transform', action='store_true', help='Perform log2(x+1) transform')
parser.add_argument('--max_iter', '-i', type=int, default=30000, help='Max iteration')
parser.add_argument('--weight_decay', type=float, default=5e-4)
parser.add_argument('--impute', action='store_true', help='Save the imputed data in layer impute')
parser.add_argument('--binary', action='store_true', help='Save binary imputed data in layer binary')
parser.add_argument('--embed', type=str, default='UMAP')
parser.add_argument('--reference', type=str, default='celltype')
parser.add_argument('--cluster_method', type=str, default='leiden')
args = parser.parse_args()
# Set random seed
seed = args.seed
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available(): # cuda device
device='cuda'
torch.cuda.set_device(args.gpu)
else:
device='cpu'
batch_size = args.batch_size
print("\n**********************************************************************")
print(" SCALE: Single-Cell ATAC-seq Analysis via Latent feature Extraction")
print("**********************************************************************\n")
adata, trainloader, testloader = load_dataset(
args.data_list,
batch_categories=None,
join='inner',
batch_key='batch',
batch_name='batch',
min_genes=args.min_peaks,
min_cells=args.min_cells,
batch_size=args.batch_size,
n_top_genes=args.n_feature,
log=None,
)
cell_num = adata.shape[0]
input_dim = adata.shape[1]
# if args.n_centroids is None:
# k = estimate_k(adata.X.T)
# print('Estimate k = {}'.format(k))
# else:
# k = args.n_centroids
lr = args.lr
k = args.n_centroids
outdir = args.outdir+'/'
if not os.path.exists(outdir):
os.makedirs(outdir)
print("\n======== Parameters ========")
print('Cell number: {}\nPeak number: {}\nn_centroids: {}\nmax_iter: {}\nbatch_size: {}\ncell filter by peaks: {}\npeak filter by cells: {}'.format(
cell_num, input_dim, k, args.max_iter, batch_size, args.min_peaks, args.min_cells))
print("============================")
dims = [input_dim, args.latent, args.encode_dim, args.decode_dim]
model = SCALE(dims, n_centroids=k)
print(model)
if not args.pretrain:
print('\n## Training Model ##')
model.init_gmm_params(testloader)
model.fit(trainloader,
lr=lr,
weight_decay=args.weight_decay,
verbose=args.verbose,
device = device,
max_iter=args.max_iter,
# name=name,
outdir=outdir
)
torch.save(model.state_dict(), os.path.join(outdir, 'model.pt')) # save model
else:
print('\n## Loading Model: {}\n'.format(args.pretrain))
model.load_model(args.pretrain)
model.to(device)
### output ###
print('outdir: {}'.format(outdir))
# 1. latent feature
adata.obsm['latent'] = model.encodeBatch(testloader, device=device, out='z')
# 2. cluster
sc.pp.neighbors(adata, n_neighbors=30, use_rep='latent')
if args.cluster_method == 'leiden':
sc.tl.leiden(adata)
elif args.cluster_method == 'kmeans':
kmeans = KMeans(n_clusters=k, n_init=20, random_state=0)
adata.obs['kmeans'] = kmeans.fit_predict(adata.obsm['latent']).astype(str)
# if args.reference in adata.obs:
# cluster_report(adata.obs[args.reference].cat.codes, adata.obs[args.cluster_method].astype(int))
sc.settings.figdir = outdir
sc.set_figure_params(dpi=80, figsize=(6,6), fontsize=10)
if args.embed == 'UMAP':
sc.tl.umap(adata, min_dist=0.1)
color = [c for c in ['celltype', args.cluster_method] if c in adata.obs]
sc.pl.umap(adata, color=color, save='.pdf', wspace=0.4, ncols=4)
elif args.embed == 'tSNE':
sc.tl.tsne(adata, use_rep='latent')
color = [c for c in ['celltype', args.cluster_method] if c in adata.obs]
sc.pl.tsne(adata, color=color, save='.pdf', wspace=0.4, ncols=4)
if args.impute:
adata.obsm['impute'] = model.encodeBatch(testloader, device=device, out='x')
if args.binary:
adata.obsm['impute'] = model.encodeBatch(testloader, device=device, out='x')
adata.obsm['binary'] = binarization(adata.obsm['impute'], adata.X)
del adata.obsm['impute']
adata.write(outdir+'adata.h5ad', compression='gzip')