-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathnaive_RNN_forecasting.py
110 lines (87 loc) · 3.62 KB
/
naive_RNN_forecasting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
#encoding=utf-8
from models import RNNs
import util
import eval
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
import csv
import numpy as np
def RNN_forecasting(dataset, lookBack, lr, inputDim=1, hiddenNum=64, outputDim=1, unit="GRU", epoch=20,
batchSize=30, varFlag=False, minLen=15, maxLen=30, step=5):
# 归一化数据
scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset)
# 分割序列为样本,并整理成RNN的输入形式
train, test = util.divideTrainTest(dataset)
trainX = None
trainY = None
vtrainX = None
vtrainY = None
testX = None
testY = None
vtestX = None
vtestY = None
# 构建模型并训练
RNNModel = RNNs.RNNsModel(inputDim, hiddenNum, outputDim, unit, lr)
if varFlag:
vtrainX, vtrainY = util.createVariableDataset(train, minLen, maxLen, step)
vtestX, vtestY = util.createVariableDataset(test, minLen, maxLen, step)
print("trainX shape is", vtrainX.shape)
print("trainY shape is", vtrainY.shape)
print("testX shape is", vtestX.shape)
print("testY shape is", vtestY.shape)
RNNModel.train(vtrainX, vtrainY, epoch, batchSize)
else:
trainX, trainY = util.createSamples(train, lookBack)
testX, testY = util.createSamples(test, lookBack)
print("trainX shape is", trainX.shape)
print("trainY shape is", trainY.shape)
print("testX shape is", testX.shape)
print("testY shape is", testY.shape)
RNNModel.train(trainX, trainY, epoch, batchSize)
# 预测
if varFlag:
trainPred = RNNModel.predictVarLen(vtrainX, minLen, maxLen, step)
testPred = RNNModel.predictVarLen(vtestX, minLen, maxLen, step)
trainPred= trainPred.reshape(-1, 1)
else:
trainPred = RNNModel.predict(trainX)
testPred = RNNModel.predict(testX)
trainPred = trainPred.reshape(-1, 1)
if varFlag:
# 转化一下test的label
testY = util.transform_groundTruth(vtestY, minLen, maxLen, step)
testY = testY.reshape(-1, 1)
testPred = testPred.reshape(-1, 1)
print("testY", testY.shape)
print("testPred", testPred.shape)
# 还原数据
testPred = scaler.inverse_transform(testPred)
testY = scaler.inverse_transform(testY)
# 评估指标
MAE = eval.calcMAE(testY, testPred)
print("test MAE", MAE)
MRSE = eval.calcRMSE(testY, testPred)
print("test RMSE", MRSE)
MAPE = eval.calcMAPE(testY, testPred)
print("test MAPE", MAPE)
SMAPE = eval.calcSMAPE(testY, testPred)
print("test SMAPE", SMAPE)
#util.plot(trainPred,trainY,testPred,testY)
return trainPred, testPred, MAE, MRSE, SMAPE
if __name__ == "__main__":
lag = 24
batch_size = 32
epoch = 20
hidden_dim = 64
lr = 1e-4
unit = "GRU"
# ts, data = util.load_data("./data/NSW2013.csv", columnName="TOTALDEMAND")
# ts, data = util.load_data("./data/bike_hour.csv", columnName="cnt")
# ts, data = util.load_data("./data/TAS2016.csv", columnName="TOTALDEMAND")
# ts, data = util.load_data("./data/traffic_data_in_bits.csv", columnName="value")
# ts, data = util.load_data("./data/beijing_pm25.csv", columnName="pm2.5")
# ts, data = util.load_data("./data/pollution.csv", columnName="Ozone")
ts, data = util.load_data("./data/ali_cloud/m_1955_cpu.csv", columnName="cpu")
trainPred, testPred, mae, mrse, smape = RNN_forecasting(data, lookBack=lag, epoch=epoch, batchSize=batch_size,
varFlag=False, minLen=24, maxLen=48, step=8, unit=unit, lr=lr)