model放在了models/Defined_Network下
- SwiftNetSlim_GFLAndMap_BN2下guided_map是从RGB三个通道生成的!,之后Gen_Y_Swiftslim_BN2的guided_map是在RGBY四个通道下生成的!!!基本一样
- 存在scale_factor超参数,默认是0.25(4倍下采样)
- 未知GT光亮程度下作为回归问题的结果差距 较明显
- 更大的BS没有大的性能提升
-
2-steptraining strategy没用
res18_Slim7x7 + SPP + Upsample(swiftnet) 384p
SSIMLOSS L1Loss InstanceNorm BatchNorm AdaptiveNorm(也许不是这么这么叫)
net | regression | step | psnr | ssim | time | line |
---|---|---|---|---|---|---|
Backbone7x7 | patch_loss:0.13 train_loss:0.13 psnr:30. ssim:0.88 test_loss:0.20 psnr::26.2ssim:0.83 |
1e5 | 26.2374 | 0.8311 | 18h | python gfl_train_tensorboard.py --net=Backbone7x7 --device=cuda:0 --step=100000 --pth=Backbone7x7_inC4_384p_1e5_l1_ssim_IN --divisor=16 --bs=8 --l1loss --crop_size=384 --lr=0.0004 --norm --ssimloss --incolor=4 |
Backbone7x7过拟合严重,拟合能力也不强 实验条件和上相同 没有光照调节下incolor=3,ImageNet光亮替代 |
patch_loss:0.15 train_loss:0.15 psnr:27.4 ssim:0.88 test_loss:0.27 psnr:21.3ssim:0.80 |
1e5 | 21.9252 | 0.8018 | 18h | python gfl_train_tensorboard.py --net=Backbone7x7 --device=cuda:2 --step=100000 --pth=Backbone7x7_inC3_384p_1e5_l1_ssim_IN --divisor=16 --bs=8 --l1loss --crop_size=384 --lr=0.0004 --norm --ssimloss --incolor=3 |
Backbone7x7incolor=3 扩大BS=96 |
BS=96没啥大作用 | 1e5 | 21.9674 | 0.8039 | 18h | python gfl_train_tensorboard.py --net=Backbone7x7 --device=cuda:0 --step=100000 --pth=Backbone7x7_inC3_384p_1e5_l1_ssim_IN_96bs --divisor=16 --bs=96 --l1loss --crop_size=384 --lr=0.0004 --norm --ssimloss --incolor=3 |
- Gen_Y_Swiftslim_BN2=Gen_Y_Backbone7x7
- Gen_Y_Swiftslim_BN2_Share=Gen_Y_Backbone7x7_Share
Y:l1 0ut: l1+ssimloss
scale_factor超参!:Y在下采样下(0.25)处理,结果使用bilinear上采样
Share: 共享encoder+SPP
net | regression | step | psnr | ssim | time | line |
---|---|---|---|---|---|---|
Gen_Y_Backbone7x7 | patch_loss:train_loss: psnr: ssim: test_loss: psnr:ssim: |
2e5 | 22.2285 |
0.8036 | 18h | python Gen_Y_train_tensorboard.py --device='cuda:1' --steps=200000 --lr=0.0004 --pth=Gen_Y_Backbone7x7_inC3_384p_2e5_l1_ssim --divisor=16 --bs=8 --l1loss --crop_size=384 --norm --net=Gen_Y_Backbone7x7 --scale_factor=0.25 --ssimloss --incolor=3 |
Gen_Y_Backbone7x7_Share | patch_loss:train_loss: psnr: ssim: test_loss: psnr:ssim: |
2e5 | 21.8304 | 0.8054 |
18h | python Gen_Y_Share_train_tensorboard.py --device='cuda:2' --steps=200000 --lr=0.0004 --pth=Gen_Y_Backbone7x7_Share_inC3_384p_2e5_l1_ssim --divisor=16 --bs=8 --l1loss --crop_size=384 --norm --net=Gen_Y_Backbone7x7_Share --scale_factor=0.25 --ssimloss --incolor=3 |
- Gen_Y_Swiftslim_BN2=Gen_Y_Backbone7x7
- Gen_Y_Swiftslim_BN2_Share=Gen_Y_Backbone7x7_Share
Y:l1 0ut: l1+ssimloss
scale_factor超参!:Y在下采样下(0.25)处理,结果使用bilinear上采样
共享encoder+SPP或not
net | regression | step | psnr | ssim | time | line |
---|---|---|---|---|---|---|
Gen_Y_Backbone7x7 | patch_loss:train_loss: psnr: ssim: test_loss: psnr:ssim: |
2e5 | 26.2966 | 0.8330 | 18h | python Gen_Y_train_tensorboard.py --device='cuda:1' --steps=200000 --lr=0.0004 --pth=Gen_Y_Backbone7x7_inC4_384p_2e5_l1_ssim --divisor=16 --bs=8 --l1loss --crop_size=384 --norm --net=Gen_Y_Backbone7x7 --scale_factor=0.25 --ssimloss --incolor=4 |
Gen_Y_Backbone7x7_Share | patch_loss:train_loss: psnr: ssim: test_loss: psnr:ssim: |
2e5 | 26.4421 |
0.8338 |
18h | python Gen_Y_Share_train_tensorboard.py --device='cuda:2' --steps=200000 --lr=0.0004 --pth=Gen_Y_Backbone7x7_Share_inC4_384p_2e5_l1_ssim --divisor=16 --bs=8 --l1loss --crop_size=384 --norm --net=Gen_Y_Backbone7x7_Share --scale_factor=0.25 --ssimloss --incolor=4 |
net | regression | step | psnr | ssim | time | line |
---|---|---|---|---|---|---|
Backbone7x7 dark |
patch_loss: train_loss: psnr: ssim: test_loss: psnr::ssim: | 1e5 | 26.2623 | 0.8788 | 18h | python gfl_train_tensorboard.py --net=Backbone7x7 --device=cuda:0 --step=100000 --pth=Backbone7x7_inC4_384p_1e5_l1_ssim_IN_AG_dark --divisor=16 --bs=8 --l1loss --crop_size=384 --lr=0.0004 --norm --ssimloss --incolor=4 --trainset=AttentionGuided --subset=dark |
Backbone7x7 lowlight |
patch_loss: train_loss: psnr: ssim: test_loss: psnr::ssim: | 1e5 | 21.5655 | 0.6533 | 18h | python gfl_train_tensorboard.py --net=Backbone7x7 --device=cuda:1 --step=100000 --pth=Backbone7x7_inC4_384p_1e5_l1_ssim_IN_AG_lowlight --divisor=16 --bs=8 --l1loss --crop_size=384 --lr=0.0004 --norm --ssimloss --incolor=4 --trainset=AttentionGuided --subset=lowlight |
Gen_Y_Backbone7x7_Share dark |
patch_loss:train_loss: psnr: ssim: test_loss: psnr:ssim: | 2e5 | 26.2801 | 0.8779 | 18h | python Gen_Y_Share_train_tensorboard.py --device='cuda:0' --steps=200000 --lr=0.0004 --pth=Gen_Y_Backbone7x7_Share_inC4_384p_2e5_l1_ssim_AG_dark --divisor=16 --bs=8 --l1loss --crop_size=384 --norm --net=Gen_Y_Backbone7x7_Share --scale_factor=0.25 --ssimloss --incolor=4 --trainset=AttentionGuided --subset=dark |
Gen_Y_Backbone7x7_Share lowlight |
patch_loss:train_loss: psnr: ssim: test_loss: psnr:ssim: | 2e5 | 21.5660 | 0.6523 | 18h | python Gen_Y_Share_train_tensorboard.py --device='cuda:1' --steps=200000 --lr=0.0004 --pth=Gen_Y_Backbone7x7_Share_inC4_384p_2e5_l1_ssim_AG_lowlight --divisor=16 --bs=8 --l1loss --crop_size=384 --norm --net=Gen_Y_Backbone7x7_Share --scale_factor=0.25 --ssimloss --incolor=4 --trainset=AttentionGuided --subset=lowlight |
这种下采样genY的方式并没有增加多少运算量但是能够提升性能
net | device | resolution | FPS | avg_infer_decay |
---|---|---|---|---|
Backbone7x7 | GeForce GTX TITAN X | [1,4,1920,1080] | 34.86 | 0.028 |
Gen_Y_Backbone7x7主干网络是Backbone7x7 | GeForce GTX TITAN X | [1,3,1920,1080] | 31.5 |
0.031 |
Gen_Y_Backbone7x7_Share FPS确实一样 |
GeForce GTX TITAN X | [1,3,1920,1080] | 31.5 |
0.031 |
InstanceNorm不支持!!!!
|net|InputSize|FLOPs|memory|paras|
|-|-|-|-|-|-|
|Backbone7x7|4x1920x1056|7.57G|864.06MB|427,534| |
Gen_Y_Backbone7x7|3x1920x1056|||853,458|
|Gen_Y_Backbone7x7_Share
|3x1920x1056|||494,981|