-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy path0413-arithmetic-slices.js
134 lines (49 loc) · 1.7 KB
/
0413-arithmetic-slices.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
// 413. Arithmetic Slices
// Medium 55%
// A sequence of number is called arithmetic if it consists of at least three
// elements and if the difference between any two consecutive elements is the
// same.
// For example, these are arithmetic sequence:
// 1, 3, 5, 7, 9
// 7, 7, 7, 7
// 3, -1, -5, -9
// The following sequence is not arithmetic.
// 1, 1, 2, 5, 7
// A zero-indexed array A consisting of N numbers is given. A slice of that
// array is any pair of integers (P, Q) such that 0 <= P < Q < N.
// A slice (P, Q) of array A is called arithmetic if the sequence:
// A[P], A[p + 1], ..., A[Q - 1], A[Q] is arithmetic. In particular, this means
// that P + 1 < Q.
// The function should return the number of arithmetic slices in the array A.
// Example:
// A = [1, 2, 3, 4]
// return: 3, for 3 arithmetic slices in A: [1, 2, 3], [2, 3, 4] and [1, 2, 3,
// 4] itself.
/**
* @param {number[]} A
* @return {number}
*/
const numberOfArithmeticSlices = function(A) {
const n = A.length
let result = 0
for (let i = 1; i < n; i++) {
let count = 0
while (A[i] - A[i - 1] === A[i + 1] - A[i]) {
count++
i++
}
result += ((count + 1) * count / 2)
}
return result
}
;[
[1, 2, 3, 4], // 3
[1, 2, 3, 4, 5, 6, 9, 12], // 11
].forEach(A => {
console.log(numberOfArithmeticSlices(A))
})
// Solution:
// 计算每个能够组成算术数列的最长子数组。
// 该最长子数组中能够找到 (1+a)*a/2 个算术数列子数组,其中 a为长度减2。
// 按照该思想实现该函数。
// Submission Result: Accepted