-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy path0654-maximum-binary-tree.js
72 lines (58 loc) · 1.67 KB
/
0654-maximum-binary-tree.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
// 654. Maximum Binary Tree
// Medium 70%
// Given an integer array with no duplicates. A maximum tree building on this
// array is defined as follow:
// The root is the maximum number in the array.
// The left subtree is the maximum tree constructed from left part subarray
// divided by the maximum number.
// The right subtree is the maximum tree constructed from right part subarray
// divided by the maximum number.
// Construct the maximum tree by the given array and output the root node of this
// tree.
// Example 1:
// Input: [3,2,1,6,0,5]
// Output: return the tree root node representing the following tree:
// 6
// / \
// 3 5
// \ /
// 2 0
// \
// 1
// Note:
// The size of the given array will be in the range [1,1000].
/**
* Definition for a binary tree node.
* function TreeNode(val) {
* this.val = val;
* this.left = this.right = null;
* }
*/
/**
* @param {number[]} nums
* @return {TreeNode}
*/
const constructMaximumBinaryTree = function(nums) {
function iter(start, end) {
if (start > end) return null
let j = start
for (let i = start; i <= end; i++) {
j = nums[i] > nums[j] ? i : j
}
const root = new TreeNode(nums[j])
root.left = iter(start, j - 1)
root.right = iter(j + 1, end)
return root
}
return iter(0, nums.length - 1)
}
;[
[3,2,1,6,0,5],
].forEach(nums => {
console.log(constructMaximumBinaryTree(nums))
})
// Solution:
// 递归过程中,
// 每次找出数组的最大值位置,并为最大值创建一个节点作为根节点返回,
// 且该节点的左(右)子树为该数字位置的左(右)边子数组。
// Submission Result: Accepted