-
Notifications
You must be signed in to change notification settings - Fork 98
/
train.py
224 lines (194 loc) · 9.42 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import argparse
import logging
import os
import numpy as np
import torch
from torch import nn
import torch.optim as optim
from torch.utils.data.sampler import RandomSampler
from tqdm import tqdm
import utils
import model.net as net
from evaluate import evaluate
from dataloader import *
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
logger = logging.getLogger('DeepAR.Train')
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='elect', help='Name of the dataset')
parser.add_argument('--data-folder', default='data', help='Parent dir of the dataset')
parser.add_argument('--model-name', default='base_model', help='Directory containing params.json')
parser.add_argument('--relative-metrics', action='store_true', help='Whether to normalize the metrics by label scales')
parser.add_argument('--sampling', action='store_true', help='Whether to sample during evaluation')
parser.add_argument('--save-best', action='store_true', help='Whether to save best ND to param_search.txt')
parser.add_argument('--restore-file', default=None,
help='Optional, name of the file in --model_dir containing weights to reload before \
training') # 'best' or 'epoch_#'
def train(model: nn.Module,
optimizer: optim,
loss_fn,
train_loader: DataLoader,
test_loader: DataLoader,
params: utils.Params,
epoch: int) -> float:
'''Train the model on one epoch by batches.
Args:
model: (torch.nn.Module) the neural network
optimizer: (torch.optim) optimizer for parameters of model
loss_fn: a function that takes outputs and labels per timestep, and then computes the loss for the batch
train_loader: load train data and labels
test_loader: load test data and labels
params: (Params) hyperparameters
epoch: (int) the current training epoch
'''
model.train()
loss_epoch = np.zeros(len(train_loader))
# Train_loader:
# train_batch ([batch_size, train_window, 1+cov_dim]): z_{0:T-1} + x_{1:T}, note that z_0 = 0;
# idx ([batch_size]): one integer denoting the time series id;
# labels_batch ([batch_size, train_window]): z_{1:T}.
for i, (train_batch, idx, labels_batch) in enumerate(tqdm(train_loader)):
optimizer.zero_grad()
batch_size = train_batch.shape[0]
train_batch = train_batch.permute(1, 0, 2).to(torch.float32).to(params.device) # not scaled
labels_batch = labels_batch.permute(1, 0).to(torch.float32).to(params.device) # not scaled
idx = idx.unsqueeze(0).to(params.device)
loss = torch.zeros(1, device=params.device)
hidden = model.init_hidden(batch_size)
cell = model.init_cell(batch_size)
for t in range(params.train_window):
# if z_t is missing, replace it by output mu from the last time step
zero_index = (train_batch[t, :, 0] == 0)
if t > 0 and torch.sum(zero_index) > 0:
train_batch[t, zero_index, 0] = mu[zero_index]
mu, sigma, hidden, cell = model(train_batch[t].unsqueeze_(0).clone(), idx, hidden, cell)
loss += loss_fn(mu, sigma, labels_batch[t])
loss.backward()
optimizer.step()
loss = loss.item() / params.train_window # loss per timestep
loss_epoch[i] = loss
if i % 1000 == 0:
test_metrics = evaluate(model, loss_fn, test_loader, params, epoch, sample=args.sampling)
model.train()
logger.info(f'train_loss: {loss}')
if i == 0:
logger.info(f'train_loss: {loss}')
return loss_epoch
def train_and_evaluate(model: nn.Module,
train_loader: DataLoader,
test_loader: DataLoader,
optimizer: optim, loss_fn,
params: utils.Params,
restore_file: str = None) -> None:
'''Train the model and evaluate every epoch.
Args:
model: (torch.nn.Module) the Deep AR model
train_loader: load train data and labels
test_loader: load test data and labels
optimizer: (torch.optim) optimizer for parameters of model
loss_fn: a function that takes outputs and labels per timestep, and then computes the loss for the batch
params: (Params) hyperparameters
restore_file: (string) optional- name of file to restore from (without its extension .pth.tar)
'''
# reload weights from restore_file if specified
if restore_file is not None:
restore_path = os.path.join(params.model_dir, restore_file + '.pth.tar')
logger.info('Restoring parameters from {}'.format(restore_path))
utils.load_checkpoint(restore_path, model, optimizer)
logger.info('begin training and evaluation')
best_test_ND = float('inf')
train_len = len(train_loader)
ND_summary = np.zeros(params.num_epochs)
loss_summary = np.zeros((train_len * params.num_epochs))
for epoch in range(params.num_epochs):
logger.info('Epoch {}/{}'.format(epoch + 1, params.num_epochs))
loss_summary[epoch * train_len:(epoch + 1) * train_len] = train(model, optimizer, loss_fn, train_loader,
test_loader, params, epoch)
test_metrics = evaluate(model, loss_fn, test_loader, params, epoch, sample=args.sampling)
ND_summary[epoch] = test_metrics['ND']
is_best = ND_summary[epoch] <= best_test_ND
# Save weights
utils.save_checkpoint({'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optim_dict': optimizer.state_dict()},
epoch=epoch,
is_best=is_best,
checkpoint=params.model_dir)
if is_best:
logger.info('- Found new best ND')
best_test_ND = ND_summary[epoch]
best_json_path = os.path.join(params.model_dir, 'metrics_test_best_weights.json')
utils.save_dict_to_json(test_metrics, best_json_path)
logger.info('Current Best ND is: %.5f' % best_test_ND)
utils.plot_all_epoch(ND_summary[:epoch + 1], args.dataset + '_ND', params.plot_dir)
utils.plot_all_epoch(loss_summary[:(epoch + 1) * train_len], args.dataset + '_loss', params.plot_dir)
last_json_path = os.path.join(params.model_dir, 'metrics_test_last_weights.json')
utils.save_dict_to_json(test_metrics, last_json_path)
if args.save_best:
f = open('./param_search.txt', 'w')
f.write('-----------\n')
list_of_params = args.search_params.split(',')
print_params = ''
for param in list_of_params:
param_value = getattr(params, param)
print_params += f'{param}: {param_value:.2f}'
print_params = print_params[:-1]
f.write(print_params + '\n')
f.write('Best ND: ' + str(best_test_ND) + '\n')
logger.info(print_params)
logger.info(f'Best ND: {best_test_ND}')
f.close()
utils.plot_all_epoch(ND_summary, print_params + '_ND', location=params.plot_dir)
utils.plot_all_epoch(loss_summary, print_params + '_loss', location=params.plot_dir)
if __name__ == '__main__':
# Load the parameters from json file
args = parser.parse_args()
model_dir = os.path.join('experiments', args.model_name)
json_path = os.path.join(model_dir, 'params.json')
data_dir = os.path.join(args.data_folder, args.dataset)
assert os.path.isfile(json_path), f'No json configuration file found at {json_path}'
params = utils.Params(json_path)
params.relative_metrics = args.relative_metrics
params.sampling = args.sampling
params.model_dir = model_dir
params.plot_dir = os.path.join(model_dir, 'figures')
# create missing directories
try:
os.mkdir(params.plot_dir)
except FileExistsError:
pass
# use GPU if available
cuda_exist = torch.cuda.is_available()
# Set random seeds for reproducible experiments if necessary
if cuda_exist:
params.device = torch.device('cuda')
# torch.cuda.manual_seed(240)
logger.info('Using Cuda...')
model = net.Net(params).cuda()
else:
params.device = torch.device('cpu')
# torch.manual_seed(230)
logger.info('Not using cuda...')
model = net.Net(params)
utils.set_logger(os.path.join(model_dir, 'train.log'))
logger.info('Loading the datasets...')
train_set = TrainDataset(data_dir, args.dataset, params.num_class)
test_set = TestDataset(data_dir, args.dataset, params.num_class)
sampler = WeightedSampler(data_dir, args.dataset) # Use weighted sampler instead of random sampler
train_loader = DataLoader(train_set, batch_size=params.batch_size, sampler=sampler, num_workers=4)
test_loader = DataLoader(test_set, batch_size=params.predict_batch, sampler=RandomSampler(test_set), num_workers=4)
logger.info('Loading complete.')
logger.info(f'Model: \n{str(model)}')
optimizer = optim.Adam(model.parameters(), lr=params.learning_rate)
# fetch loss function
loss_fn = net.loss_fn
# Train the model
logger.info('Starting training for {} epoch(s)'.format(params.num_epochs))
train_and_evaluate(model,
train_loader,
test_loader,
optimizer,
loss_fn,
params,
args.restore_file)