-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfile_extract.py
80 lines (68 loc) · 3.83 KB
/
file_extract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import csv
def obtain_label_perm_avg(path, num_task, num_classes):
"""
obtain labels and acc calculation results from perm_avg csv file
:param path: path to csv perm_avg file waiting for being read
:return: labels list, accuracy results
"""
# list initialization: label list, train accuracy list and test accuracy list
org_label_list_split, target_label_list_split = [], [] # original labels list, training target label list
acc_train_avg_list, acc_train_min_list, acc_train_max_list = [], [], []
acc_test_avg_list, acc_test_min_list, acc_test_max_list = [], [], []
# labels and acc read from csv file
n_labels = 2*num_classes*num_task
with open(path + '.csv', encoding='utf-8-sig') as f:
for row in csv.reader(f, skipinitialspace=True):
# orginal labels in classes
labels = []
for i in range(num_task):
labels_per_group = []
for j in range(num_classes):
labels_per_group.append(int(float(row[i*num_classes+j])))
labels.append(labels_per_group)
# random target labels in classes
labels_random = []
for i in range(num_task):
labels_per_group_binary_random = []
for j in range(num_classes):
labels_per_group_binary_random.append(int(float(row[num_task*num_classes+i*num_classes+j])))
labels_random.append(labels_per_group_binary_random)
org_label_list_split.append(labels)
target_label_list_split.append(labels_random)
acc_train_avg_list.append(float(row[n_labels])), acc_train_min_list.append(float(row[n_labels+1])), acc_train_max_list.append(float(row[n_labels+2]))
acc_test_avg_list.append(float(row[n_labels+3])), acc_test_min_list.append(float(row[n_labels+4])), acc_test_max_list.append(float(row[n_labels+5]))
f.close()
return org_label_list_split, target_label_list_split, acc_train_avg_list, acc_train_min_list, acc_train_max_list, acc_test_avg_list, acc_test_min_list, acc_test_max_list
def obtain_label_forget_avg(path, num_task, num_classes):
"""
obtain labels and forget calculation results from forget_avg csv file
:param path: path to csv forget_avg file waiting for being read
:return: labels list, average forgetting results
"""
# list initialization: label list, average forget performance
org_label_list_split, target_label_list_split = [], [] # original labels list, training target label list
acc_forget_avg_list = [] # average forget results collect
# labels and acc read from csv file
n_labels = 2*num_classes*num_task
with open(path + '.csv', encoding='utf-8-sig') as f:
for row in csv.reader(f, skipinitialspace=True):
# orginal labels in classes
labels = []
for i in range(num_task):
labels_per_group = []
for j in range(num_classes):
labels_per_group.append(int(float(row[i*num_classes+j])))
labels.append(labels_per_group)
# target labels in classes
labels_random = []
for i in range(num_task):
labels_per_group_binary_random = []
for j in range(num_classes):
labels_per_group_binary_random.append(int(float(row[num_task*num_classes+i*num_classes+j])))
labels_random.append(labels_per_group_binary_random)
# labels and forget performance obtained
org_label_list_split.append(labels)
target_label_list_split.append(labels_random)
acc_forget_avg_list.append(float(row[n_labels]))
f.close()
return org_label_list_split, target_label_list_split, acc_forget_avg_list