-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathner_main.py
69 lines (55 loc) · 3.52 KB
/
ner_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from src.utils import init_experiment
from src.ner.dataloader import get_dataloader
from src.ner.trainer import NERTrainer
from src.ner.model import BinaryNERagger, EntityNamePredictor, SentRepreGenerator
from config import get_params
import numpy as np
from tqdm import tqdm
def main(params):
# initialize experiment
logger = init_experiment(params, logger_filename=params.logger_filename)
# get dataloader
dataloader_tr, dataloader_val, dataloader_test, vocab = get_dataloader(params.batch_size, use_label_encoder=params.tr, n_samples=params.n_samples)
# build model
binary_nertagger = BinaryNERagger(params, vocab)
entityname_predictor = EntityNamePredictor(params)
binary_nertagger, entityname_predictor = binary_nertagger.cuda(), entityname_predictor.cuda()
if params.tr:
sent_repre_generator = SentRepreGenerator(params, vocab)
sent_repre_generator = sent_repre_generator.cuda()
ner_trainer = NERTrainer(params, binary_nertagger, entityname_predictor, sent_repre_generator)
else:
ner_trainer = NERTrainer(params, binary_nertagger, entityname_predictor)
for e in range(params.epoch):
logger.info("============== epoch {} ==============".format(e+1))
loss_bin_list, loss_entityname_list = [], []
if params.tr:
loss_tem0_list, loss_tem1_list = [], []
pbar = tqdm(enumerate(dataloader_tr), total=len(dataloader_tr))
if params.tr:
for i, (X, lengths, y_bin, y_final, templates, tem_lengths) in pbar:
X, lengths, templates, tem_lengths = X.cuda(), lengths.cuda(), templates.cuda(), tem_lengths.cuda()
loss_bin, loss_entityname, loss_tem0, loss_tem1 = ner_trainer.train_step(X, lengths, y_bin, y_final, templates=templates, tem_lengths=tem_lengths, epoch=e)
loss_bin_list.append(loss_bin)
loss_entityname_list.append(loss_entityname)
loss_tem0_list.append(loss_tem0)
loss_tem1_list.append(loss_tem1)
pbar.set_description("(Epoch {}) LOSS BIN:{:.4f} LOSS entity:{:.4f} LOSS TEM0:{:.4f} LOSS TEM1:{:.4f}".format((e+1), np.mean(loss_bin_list), np.mean(loss_entityname_list), np.mean(loss_tem0_list), np.mean(loss_tem1_list)))
else:
for i, (X, lengths, y_bin, y_final) in pbar:
X, lengths = X.cuda(), lengths.cuda()
loss_bin, loss_entityname = ner_trainer.train_step(X, lengths, y_bin, y_final)
loss_bin_list.append(loss_bin)
loss_entityname_list.append(loss_entityname)
pbar.set_description("(Epoch {}) LOSS BIN:{:.4f} LOSS entity:{:.4f}".format((e+1), np.mean(loss_bin_list), np.mean(loss_entityname_list)))
logger.info("Finish training epoch {}. LOSS BIN:{:.4f} LOSS entity:{:.4f}".format((e+1), np.mean(loss_bin_list), np.mean(loss_entityname_list)))
logger.info("============== Evaluate Epoch {} ==============".format(e+1))
bin_f1, final_f1, stop_training_flag = ner_trainer.evaluate(dataloader_val, istestset=False)
logger.info("Eval on dev set. Binary entity-F1: {:.4f}. Final entity-F1: {:.4f}.".format(bin_f1, final_f1))
bin_f1, final_f1, stop_training_flag = ner_trainer.evaluate(dataloader_test, istestset=True)
logger.info("Eval on test set. Binary entity-F1: {:.4f}. Final entity-F1: {:.4f}.".format(bin_f1, final_f1))
if stop_training_flag == True:
break
if __name__ == "__main__":
params = get_params()
main(params)