To build and deploy the backend for your instance of the AcademicInsights Extension efficiently, you can follow this step-by-step guide.
Create a Python virtual environment to manage dependencies:
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
Verify the backend runs locally:
python app.py
The backend should be accessible at http://localhost:5000
.
Containerize your backend for deployment using Docker.
FROM python:3.9-slim
WORKDIR /app
# Install dependencies
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
# Copy project files
COPY . .
# Expose port 5000
EXPOSE 5000
# Run the application
CMD ["python", "app.py"]
- Build the image:
docker build -t web-extension-backend .
- Run the container:
docker run -p 5000:5000 web-extension-backend
Choose a cloud platform to host the backend. Below are some common options:
-
Elastic Beanstalk:
- Install the Elastic Beanstalk CLI:
pip install awsebcli
- Initialize the project:
eb init
- Deploy the application:
eb create web-extension-env
- Install the Elastic Beanstalk CLI:
-
EC2 Instance:
- Launch an EC2 instance with Python pre-installed.
- Install Docker:
sudo apt update sudo apt install docker.io
- Transfer files to the instance and build the Docker image:
docker build -t web-extension-backend . docker run -p 5000:5000 web-extension-backend
- Install the Heroku CLI:
curl https://cli-assets.heroku.com/install.sh | sh
- Log in to Heroku:
heroku login
- Create a new Heroku app:
heroku create web-extension-backend
- Add a
Procfile
to the project:web: gunicorn app:app
- Push the app to Heroku:
git init git add . git commit -m "Initial commit" heroku git:remote -a web-extension-backend git push heroku main
-
Google App Engine:
- Create an
app.yaml
file:runtime: python39 entrypoint: gunicorn -b :$PORT app:app
- Deploy the app:
gcloud app deploy
- Create an
-
Google Kubernetes Engine:
- Set up a Kubernetes cluster.
- Push the Docker image to Google Container Registry (GCR):
docker tag web-extension-backend gcr.io/<project-id>/web-extension-backend docker push gcr.io/<project-id>/web-extension-backend
- Deploy the image using Kubernetes YAML configuration.
After deployment, update the API base URL in your extension's popup.js
:
const BASE_URL = "https://your-deployment-url.com";
Replace http://localhost:5000
with your production backend URL.
-
Add Authentication:
- Verify Firebase ID tokens for all endpoints.
- Use HTTPS for secure communication.
-
Rate Limiting:
- Protect your APIs from abuse using libraries like
Flask-Limiter
.
- Protect your APIs from abuse using libraries like
-
Environment Variables:
- Use
.env
files or cloud-specific environment variable managers for sensitive data like Firebase credentials.
- Use
-
Logging:
- Add logging to track requests and errors using Python's
logging
module.
- Add logging to track requests and errors using Python's
-
Monitoring:
- Use tools like Prometheus, AWS CloudWatch, or Google Monitoring for real-time tracking.
-
Scaling:
- Configure autoscaling for cloud services to handle varying traffic loads.