diff --git a/cc_torch/connected_components.py b/cc_torch/connected_components.py index beffb21..0c69754 100644 --- a/cc_torch/connected_components.py +++ b/cc_torch/connected_components.py @@ -2,19 +2,26 @@ from cc_torch import _C -def connected_components_labeling(x): +def connected_components_labeling(x, relabel=False): """ Connected Components Labeling by Block Union Find(BUF) algorithm. Args: x (cuda.ByteTensor): must be uint8, cuda and even num shapes + relabel (bool): whether to return labels in range [0, max_label] Return: label (cuda.IntTensor) """ if x.ndim == 2: - return _C.cc_2d(x) + ret = _C.cc_2d(x) elif x.ndim == 3: - return _C.cc_3d(x) + ret = _C.cc_3d(x) else: raise ValueError("x must be [H, W] or [D, H, W] shapes") + + if relabel: + vs, idxs = torch.unique(ret, return_inverse=True, sorted=True) + ret = torch.arange(len(vs), device=vs.device)[idxs] + + return ret diff --git a/tests/test_cc.py b/tests/test_cc.py index d5f1041..f29765e 100644 --- a/tests/test_cc.py +++ b/tests/test_cc.py @@ -31,6 +31,34 @@ def test_2d(self): output = cc_torch.connected_components_labeling(img_2d) self.assertTrue((output == expected_output).all()) + + def test_relabel(self): + img_2d = torch.tensor([ + 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, + 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, + 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, + 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, + 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, + 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0], dtype=torch.uint8).reshape(12, 8).cuda() + + expected_output = torch.tensor( + [[1, 1, 0, 1, 1, 1, 1, 1], + [0, 1, 1, 0, 1, 1, 1, 0], + [1, 1, 1, 0, 1, 1, 1, 0], + [1, 1, 0, 0, 0, 0, 0, 0], + [0, 1, 1, 0, 1, 0, 0, 2], + [0, 0, 0, 1, 0, 0, 2, 0], + [0, 0, 0, 0, 0, 0, 0, 0], + [0, 0, 0, 0, 0, 3, 0, 0], + [0, 0, 0, 0, 0, 3, 0, 0], + [0, 4, 0, 3, 3, 3, 3, 3], + [0, 4, 0, 0, 3, 3, 3, 0], + [0, 4, 0, 0, 3, 3, 3, 0]], dtype=torch.int32).cuda() + + output = cc_torch.connected_components_labeling(img_2d, relabel=True) + self.assertTrue((output == expected_output).all()) def test_3d(self): img_2d = torch.tensor([