diff --git a/.dockerignore b/.dockerignore index 9a406309..b848ba91 100644 --- a/.dockerignore +++ b/.dockerignore @@ -3,9 +3,10 @@ # https://docs.docker.com/engine/reference/builder/#dockerignore-file # Replicate -checkpoints/ -models/ -safety-cache/ +/checkpoints/ +/models/ +/safety-cache/ +/gradio_cached_examples/ *.mp4 *.pth *.pt diff --git a/.gitignore b/.gitignore index 19c8519d..32361b8c 100644 --- a/.gitignore +++ b/.gitignore @@ -163,10 +163,28 @@ checkpoints/ models/ # Cog -.cog/ -checkpoints/ -models/ -safety-cache/ +/.cog/ +/checkpoints/ +/models/ +/safety-cache/ *.tar .vscode gradio_cached_examples +cog/test_batchsize.py +input.png +output_*.png +output.*.png +output_image_*.png +output_image.*.png +output_*.webp +output.*.webp +output_image_*.webp +output_image.*.webp +output_*.jpg +output.*.jpg +output_image_*.jpg +output_image.*.jpg +output_*.jpeg +output.*.jpeg +output_image_*.jpeg +output_image.*.jpeg \ No newline at end of file diff --git a/cog/predict.py b/cog/predict.py index 61f343b0..9432b4a3 100644 --- a/cog/predict.py +++ b/cog/predict.py @@ -33,7 +33,7 @@ from diffusers.pipelines.stable_diffusion.safety_checker import ( StableDiffusionSafetyChecker, ) -from pipeline_stable_diffusion_xl_instantid import ( +from pipeline_stable_diffusion_xl_instantid_full import ( StableDiffusionXLInstantIDPipeline, draw_kps, ) @@ -214,12 +214,13 @@ def setup(self) -> None: if not os.path.exists(MODELS_CACHE): download_weights(MODELS_URL, MODELS_CACHE) + self.face_detection_input_width, self.face_detection_input_height = 640, 640 self.app = FaceAnalysis( name="antelopev2", root="./", providers=["CUDAExecutionProvider", "CPUExecutionProvider"], ) - self.app.prepare(ctx_id=0, det_size=(640, 640)) + self.app.prepare(ctx_id=0, det_size=(self.face_detection_input_width, self.face_detection_input_height)) # Path to InstantID models self.face_adapter = f"./checkpoints/ip-adapter.bin" @@ -548,6 +549,18 @@ def predict( "RealVisXL_V4.0_Lightning", ], ), + face_detection_input_width: int = Input( + description="Width of the input image for face detection", + default=640, + ge=640, + le=4096, + ), + face_detection_input_height: int = Input( + description="Height of the input image for face detection", + default=640, + ge=640, + le=4096, + ), scheduler: str = Input( description="Scheduler", choices=[ @@ -670,6 +683,13 @@ def predict( if sdxl_weights != self.base_weights: self.load_weights(sdxl_weights) + # Resize the output if the provided dimensions are different from the current ones + if self.face_detection_input_width != face_detection_input_width or self.face_detection_input_height != face_detection_input_height: + print(f"[!] Resizing output to {face_detection_input_width}x{face_detection_input_height}") + self.face_detection_input_width = face_detection_input_width + self.face_detection_input_height = face_detection_input_height + self.app.prepare(ctx_id=0, det_size=(self.face_detection_input_width, self.face_detection_input_height)) + # Set up ControlNet selection and their respective strength values (if any) controlnet_selection = [] if pose_strength > 0 and enable_pose_controlnet: