-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsigp.m
235 lines (215 loc) · 6.57 KB
/
sigp.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
function hyp = sigp(X,y,m,varargin)
% Finite-Sample Integral Gaussian Processes
% Implmentation for the paper: https://arxiv.org/abs/1802.07528
%
% Input:
% X, y are the n-by-p feature matrix and n-by-1 label vector.
% m specifies the rank of the desired RKHS
%
% Optional:
% EM Parameters:
% maxiter is the max number of EM iterations
% tol specifies the minimum change in the per-instance log-likelihood
% value between two consecutive EM iterations.
%
% SDR Parameters:
% sdr specifies the method for computing sample conditional variance
% 'slicing' - fast slicing based, 'ker' - kernel based (default)
% order is an index array for slicing groups, same indexes will be
% mapped to same slice, default slicing is based on y
% ns is the maximum number of slices, each slice corresponds to a range of y.
% For classification, a slice contains one or more classes
% eta is small postive number used to improve the condition of A
% ykfn/ykpar specifies the kernel and its parameter for sdr = 'ker'
% eta1 similar to eta, used when sdr method is 'ker'
%
% Mean/Covariance Functions:
% lambda is the mean function regularization parameter
% covkfn specifies the covariance kernel
%
% Returns the model struct hyp. Some important members are
% hyp.f is the fitted target function f: X -> [Y,varY]
% hyp.mf is the fitted mean function mf: X -> Y
% hyp.nlp is a vector of negative log likelihood
%
% GitHub: https://github.com/ZilongTan/sigp
% Copyright (c) 2018-2019 Zilong Tan (zilongt@cs.cmu.edu)
hyp = struct();
[n,p] = size(X);
opt = inputParser;
opt.addParameter( 'maxiter', 20, @(x) floor(x) > 0 );
opt.addParameter( 'tol', 1e-8, @(x) floor(x) >= 0);
opt.addParameter( 'order', [], @(x) isempty(x) | length(x)==n);
opt.addParameter( 'sdr', 'ker', @(x) strcmp(x,'slicing')|strcmp(x,'ker'));
opt.addParameter( 'ns', 0, @(x) floor(x) > 1 & floor(x) <= n/2); % 0 for auto select
opt.addParameter( 'eta', 1e-4, @(x) floor(x) >= 0);
opt.addParameter( 'eta1', 1e-4, @(x) floor(x) >= 0);
opt.addParameter( 'ykfn', @sigp_rbf, @(x) feval(x) >= 0);
opt.addParameter( 'ykpar', std(y), @(x) true);
opt.addParameter( 'lambda', 0, @(x) floor(x) >= 0);
opt.addParameter( 'covkfn', @sigp_rbf, @(x) feval(x) >= 0);
opt.addParameter( 'covkpar', 1, @(x) true);
opt.parse(varargin{:});
opt = opt.Results;
hyp.opt = opt;
% Sort data if we choose to slice
if strcmp(opt.sdr,'slicing') && m > 0
% Sort and slice the data by y
% This works for both regression and classification
if isempty(opt.order)
[y,idx] = sort(y,'ascend');
X = X(idx,:);
[~,nun] = unique(y);
hyp.Idx = idx;
else
y = y(opt.order);
X = X(opt.order,:);
[~,nun] = unique(opt.order);
hyp.Idx = opt.order;
end
ns = opt.ns;
if ns == 0 % auto select
ns = min(length(nun),floor(n/2));
end
nun = [nun(2:end)-nun(1:end-1); n+1-nun(end)];
if length(nun) <= ns
csz = nun;
else
csz(1,1) = 0;
sz = n/ns;
i = 1;
for j = 1:length(nun)
if csz(i,1) >= sz
i = i + 1;
csz(i,1) = 0;
end
csz(i,1) = csz(i,1) + nun(j);
end
end
ns = length(csz); % actual number of slices
pos = cumsum([1;csz]);
end
covkfn = @(X,Z,param) feval(opt.covkfn,X,Z,param);
CK = covkfn(X,[],opt.covkpar);
if m <= 0
% use the full covariance kernel
m = n;
W = eye(n);
else
if strcmp(opt.sdr,'slicing')
% Slicing-based estimation of SDR basis
% Compute RKHS dimension reduction matrices
A = zeros(n,n);
for i = 1:ns
idx = pos(i):pos(i+1)-1;
A(idx,:) = CK(idx,:) - mean(CK(idx,:));
end
C = CK - mean(CK);
A(1:n+1:end) = A(1:n+1:end) + n*opt.eta;
[W,E] = eigs(C,A,m);
else
% Kernel-based estimation of SDR basis
Ky = feval(opt.ykfn,y,[],opt.ykpar);
Ky = Ky - mean(Ky,2);
Ky = Ky - mean(Ky);
V = Ky;
V(1:n+1:end) = V(1:n+1:end) + n*opt.eta1;
V = V\Ky*CK;
V(1:n+1:end) = V(1:n+1:end) - n*opt.eta;
LK = CK - mean(CK);
[W,E] = eigs(LK,LK-V,m);
end
hyp.eigs = 1-1./diag(E);
end
% Initialize other parameters
MCK = mean(CK);
KW = CK*W;
PiX = KW - mean(KW);
PTP = PiX'*PiX;
beta = zeros(m,1);
err = y;
s2 = opt.eta;
G = zeros(n,n);
iSb = zeros(m,m);
WTKW = KW'*W;
efn = @(varargin) sigp_efn_cov(y,PiX,WTKW,varargin{:});
hyp.nlp = [];
% EM iterations
for i = 1:opt.maxiter
% Update the variance components
Sv = inv(PTP/s2 + iSb);
beta = Sv/s2*PiX'*err;
Sb = beta*beta' + Sv;
iSb = inv(Sb);
res = err - PiX*beta;
s2 = s2 + (sum(res.^2) - s2^2*trace(G))/n;
% Update the mean function
G = compG(PiX*pdsqrtm(Sb),s2);
alp = efn(G,opt.lambda);
err = efn(alp);
% Negative log-likelihood
nlp = (log(2*pi)*(n+m) + pdlogdet(Sb) + n*log(s2) + ...
beta'*iSb*beta + sum((res/sqrt(s2)).^2))/2/n;
hyp.nlp = [hyp.nlp; nlp];
if length(hyp.nlp) > 1 && hyp.nlp(end-1) - hyp.nlp(end) < opt.tol
break;
end
end
hyp.Basis = W;
hyp.alpha = alp;
hyp.Pi = PiX;
hyp.s2 = s2;
MF = W*beta;
CF = W*sqrtm(Sv);
hyp.covkfn = @(Z) covkfn(Z,X,opt.covkpar) - MCK;
hyp.mf = @(Z)-sigp_efn_cov(zeros(size(Z,1),1),hyp.covkfn(Z)*W,[],alp);
hyp.f = @(Z) sigp_pred(hyp.covkfn(Z),hyp.mf(Z),MF,CF,s2);
end
function [pmu,pvar] = sigp_pred(KZ,muZ,MF,CF,s2)
pmu = muZ + KZ*MF;
pvar = sum((KZ*CF).^2,2) + s2;
end
% Mean function based on covariance kernel
function val = sigp_efn_cov(y,PiX,S,G,lambda)
if nargin < 4, val = 'm+1'; return, end
if nargin == 4, val = y - PiX*G(2:end) - G(1); return, end
n = size(G,1);
rs = sum(G);
ss = sum(rs);
PTGL= PiX'*G - PiX'*rs'/ss*rs;
val = (PTGL*PiX + n*lambda*S)\(PTGL*y);
val = [rs/ss*(y-PiX*val); val];
end
function G = compG(PiX,s2)
n = size(PiX,1);
m = size(PiX,2);
G = PiX'*PiX;
G(1:m+1:end) = G(1:m+1:end) + s2;
G = -PiX/G*PiX';
G(1:n+1:end) = G(1:n+1:end) + 1;
G = G/s2;
end
function MSQ = pdsqrtm(X)
[MSQ,S,~] = svd(X);
MSQ = MSQ.*sqrt(diag(S))'*MSQ';
end
function val = pdlogdet(X)
S = svd(X);
val = sum(log(S));
end
function K = sigp_rbf(X,Z,band)
if nargin == 0 || isempty(X), K = 1; return, end
if nargin == 3
X = X/band;
if ~isempty(Z)
Z = Z/band;
else
Z = X;
end
end
sqX = -sum(X.^2,2);
sqZ = -sum(Z.^2,2);
K = bsxfun(@plus, sqX, (2*X)*Z');
K = bsxfun(@plus, sqZ', K);
K = exp(K);
end