Skip to content

Latest commit

 

History

History
206 lines (159 loc) · 17 KB

README.md

File metadata and controls

206 lines (159 loc) · 17 KB

S5P-LNO2

DOI

Core code for the TROPOMI lightning NO2 (LNO2) retrievals. Some useful Jupyter Notebooks are available at S5P-LNO2-Notebook.

Main workflow

Users need to prepare the Input Data first and then run the scripts one by one.

Please feel free to modify the settings.txt file for your own research.

workflow

Detailed explanations of main scripts:

  1. Select lightning-swaths with both lightning and high NO2, and save them to nc files. [s5p_lno2_main.py]
  2. Link the consecutive lightning-swath cases and save variables (case No., filename, and mask label) to csv files. [s5p_lno2_cases.py]
  3. Combine the generated csv file into fresh_lightning_cases.csv or nolightning_cases.csv. [s5p_lno2_cases_sum.py]
  4. (Optional) Plot linked variables and save them as images to filter cases manually [s5p_lno2_plot.py]. We are still thinking how to convert the manual part into an auto one.
  5. Extract TM5 no2_vmr and temperature profiles for consecutive lightning-swaths. [s5p_lno2_tm5_extract.py]
  6. Calculate lightning variables (AMFs, SCD_Bkgd, tropopause_pressure, lno2vis, lno2_geo and lno2) and save them to one netcdf file called "S5P_LNO2.nc" [s5p_lno2_product.py]
  7. Calculate lightning NO2 production efficiency and save all useful variables to one CSV file called "S5P_LNO2_PE.csv". [s5p_lno2_pe_lifetime.py]

Input Data

The used data are listed below.

The input paths are shown in parentheses. Please feel free to modify them in settings.txt.

  1. TROPOMI (<s5p_dir>/<yyymm>/S5P_**__L2__NO2____)

    There're three main methods of downloading the TROPOMI NO2 L2 data:

  2. ERA5 (<era5_dir>/era5_<yyyymm>.nc)

    The pressure level (200 - 700 hPa) ERA5 data (u and v) are used to predict the transport of lightning air in the upper troposphere.

    Note that for the TROPOMI data on the first day of month, we need the ERA5 data on the last day of the previous month.

    e.g. S5P...20220201... needs era5_202201.nc which at least has the data on 2022-01-31.

  3. Lightning Data (<lightning_dir>/<yyymm>/<yyyymmdd>.csv)

    The lightning data should be saved in CSV format and have at least three fields: timestamp, longitude, and latitude.

  4. VIIRS S-NPP fire product

    The archive VIIRS S-NPP data is available from FIRMS.

Other useful functions

  1. Regrid TROPOMI product (s5p_regrid.py and s5p_regrid_combine.py)

    The harp tool is convient for regridding TROPOMI L2 data to Lon/Lat grids with filters.

  2. Calculate the TROPOMI pixel areas (s5p_pixel_area.py)

​ Usually the areas are same for different swaths. We calculated all possible areas and saved it into one netCDF file for usage.

  1. Calculate lightning within TROPOMI swaths (swath_lightning.py)

​ It is useful to know how many lightning happened inside the swaths before the TROPOMI overpass.

  1. Grid lightning NO2 product (s5p_lno2_grid.py)
  2. Generate daily and summertime GLD360 data (gld360_daily.py and gld360_summer.py)

Outputs

1. L2 product with new variables (netCDF file)

(Click to expand) s5p_lno2_main.py adds lightning/fire data and lightning masks to simplified L2 product.

Varname Group Units Description
time S5P days since <yyyy-mm-dd> time using proleptic gregorian calendar
latitude S5P degrees_north pixel center latitude
longitude S5P degrees_east pixel center longitude
air_mass_factor_clear S5P 1 Air mass factor for the cloud-free part of the scene
air_mass_factor_cloudy S5P 1 Air mass factor for the cloud-covered part of the scene
air_mass_factor_stratosphere S5P 1 Stratospheric air mass factor
air_mass_factor_total S5P 1 Total air mass factor
air_mass_factor_troposphere S5P 1 Tropospheric air mass factor
Apparent_scene_pressure S5P Pa Scene pressure from the cloud product
assembled_lat_bounds S5P degrees_north assembled_latitude_bounds calculated by Satpy
assembled_lon_bounds S5P degrees_east assembled_longitude_bounds calculated by Satpy
Averaging_kernel S5P 1 Averaging kernel
cloud_albedo_crb S5P 1 Cloud albedo in the cloud product
cloud_fraction_crb_nitrogendioxide_window S5P 1 Cloud fraction at 440 nm for NO2 retrieval
cloud_pressure_crb S5P Pa Cloud optical centroid pressure
cloud_radiance_fraction_nitrogendioxide_window S5P 1 Cloud radiance fraction at 440 nm for NO2 retrieval
Geolocation_flags S5P 1 Some flags (see ATBD)
lightning_mask S5P 1 <0: labeled lightning with fire;
0: no lightning;
>0: labeled lightning without fire
nitrogendioxide_ghost_column S5P mol m-2 Ghost column NO2: modelled NO2 column below the cloud top
nitrogendioxide_segmentation S5P 1 0: no high NO2;
>=1: labeled high NO2
nitrogendioxide_slant_column_density S5P mol m-2 Stratospheric vertical column of nitrogen dioxide, derived from the TM5-MP vertical profiles
nitrogendioxide_stratospheric_column S5P mol m-2 Stratospheric vertical column of nitrogen dioxide, derived from the TM5-MP vertical profile
nitrogendioxide_total_column S5P mol m-2 Total vertical column of nitrogen dioxide derived from the total slant column and TM5 profile in stratosphere and troposphere
nitrogendioxide_tropospheric_column S5P mol m-2 Tropospheric vertical column of nitrogen dioxide
processing_quality_flags S5P 1 Processing quality flags (See ATBD)
qa_value S5P 1 Quality value
scene_albedo S5P 1 Scene albedo in the cloud product
snow_ice_flag S5P 1 Snow-ice mask (See ATBD)
solar_azimuth_angle S5P degree
clockwise from the North (East = 90, South = 180, West = 270)
Solar azimuth angle at the ground pixel location on the reference ellipsoid.
solar_zenith_angle S5P degree
measured away from the vertical
Solar zenith angle at the ground pixel location on the reference ellipsoid.
surface_albedo_nitrogendioxide_window S5P 1 Surface albedo in the NO2 fit window
surface_pressure S5P Pa Surface pressure
time_utc S5P 1 Time of observation as ISO 8601 date-time string
tm5_constant_a S5P Pa TM5 hybrid A coefficient at upper and lower interface levels
tm5_constant_b S5P Pa TM5 hybrid B coefficient at upper and lower interface levels
tm5_tropopause_layer_index S5P 1 TM5 layer index of the highest layer in the tropopause
viewing_azimuth_angle S5P degree
measured clockwise from the North (East = 90, South = 180, West = 270)
Satellite azimuth angle at the ground pixel location on the reference ellipsoid.
viewing_zenith_angle S5P degree
measured away from the vertical
Zenith angle of the satellite at the ground pixel location on the reference ellipsoid.
cluster_label Lightning 1 Clustered lightning labeled by DBSCAN
time Lightning minutes since
longitude Lightning degrees_east Longitude of lightning
latitude Lightning degrees_north Latitude of lightning
delta Lightning minute The time difference between detected lightning and TROPOMI overpass time
level Lightning hPa Pressure levels used for lightning NO2 air parcel
longitude_pred Lightning degrees_east Longitude of lightning at different pressure levels predicted by ERA5 data
latitude_pred Lightning degrees_north Latitude of lightning at different pressure levels predicted by ERA5 data
lightning_label Lightning 1 Lightning label paired with lightning mask
time Fire 1
longitude Fire degrees_north Longitude of fire
latitude Fire degrees_north Longitude of fire
type Fire 1 Fire type

2. Lightning NO2 production and lifetime (netCDF file)

The lightning no2 data (S5P_LNO2_production.nc and S5P_LNO2_lifetime.nc) includes the products of netCDF file and other new retrievals (see S5P-WRFCHEM, but we use a priori NO2 profiles assuming guassian distributions instead of WRF--Chem results).

(Click to expand) Data Structure

- Case 1
	-	Swath xxx
		- S5P
		 - .......... (official S5P data as shown above)
		 - scdTrop
		 - lightning_mask
		 - area
		 - amfTrop
		 - amfTropVis
		 - swClr
		 - swCld
		 - avgKernel
		 - no2apriori
		 - no2Trop
		 - no2TropVis
		 - scdClr
		 - scdCld
		 - vcdGnd
		 - tropopause_pressure
		 - plevels
		 - scdBkgd
		 - amflno2
		 - lno2_mask
		 - lno2vis
		 - lno2geo
		 - lno2
		- Lightning
	- Swath xxx
	...
- Case 2
.....

3. Lightning NO2 production and lifetime (csv file)

The csv files contain two kinds of variable:

  • Data from previous netcdf files.
  • Lightning NO2 production efficiency based on consecutive swaths.

csv head: time,case,swath,longitude,latitude,region,nlightning,area,apparent_scene_pressure,no2,lno2geo,lno2vis,lno2,pe_lno2geo,pe_lno2vis,pe_lno2

Publications

Zhang et al., Spaceborne observations of lightning NO2 in the Arctic, Environ. Sci. Technol.