-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
137 lines (113 loc) · 3.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import os
import shutil
from configs import cfg
from trainer import do_train
from utils.loss import make_loss
from solver import make_optimizer, WarmupMultiStepLR, build_scheduler
from logger import setup_logger
from torch.utils.tensorboard import SummaryWriter
import torch
import argparse
from can_render import Renderer
from utils.model_utils import select_model
from utils.data_utils import select_dataset
from torch.utils.data import DataLoader
import torch
torch.manual_seed(233)
import random
random.seed(233)
import numpy as np
np.random.seed(233)
# Parse arguments
text = "This is the program to train the nerf, try to get help by using -h"
parser = argparse.ArgumentParser(description=text)
parser.add_argument(
"-c", "--config", default="", help="set the config file path to train the network"
)
parser.add_argument(
"-g", "--gpu", type=int, default=0, help="set gpu id to train the network"
)
parser.add_argument(
"-r",
"--resume",
type=int,
default=0,
help="set the checkpoint number to resume training",
)
parser.add_argument(
"-s",
"--psnr_thres",
type=float,
default=100.0,
help="set the psnr threshold to train next frame",
)
parser.add_argument(
"-cont", "--cont", action="store_true", help="automatically continue to training"
)
parser.add_argument(
"-noise",
"--add_noise",
type=float,
default=0.0,
help="set noise level, default is zero",
)
parser.add_argument("--exp", type=str, default="test")
args = parser.parse_args()
# Set PyTorch GPU id and settings
torch.cuda.set_device(args.gpu)
# torch.autograd.set_detect_anomaly(True)
torch.set_default_dtype(torch.float32)
# Load config
training_config = args.config
assert os.path.exists(training_config), "training config does not exist."
cfg.merge_from_file(training_config)
cfg.freeze()
log_dir = "EXP"
log_path = os.path.join(log_dir, args.exp)
# Initialize writer and logger
output_dir = log_path
writer = SummaryWriter(log_dir=output_dir, max_queue=1)
writer.add_text("OUT_PATH", output_dir, 0)
logger = setup_logger("NERFRender", output_dir, 0)
logger.info("Running with config:\n{}".format(cfg))
# Save training config
shutil.copyfile(training_config, output_dir + "/config.yml")
# Create ray dataset
train_set, val_set = select_dataset(cfg, train_nrays=5500)
train_loader = DataLoader(
train_set, batch_size=1, shuffle=True, num_workers=cfg.DATALOADER.NUM_WORKERS
)
val_loader = DataLoader(val_set, batch_size=1, shuffle=False, num_workers=1)
model = select_model(cfg).cuda()
fine_model = None
render = Renderer(
model, fine_net=fine_model, cfg=cfg, canonical_vertex=train_set.canonical_vertex
)
optimizer = make_optimizer(cfg, model)
scheduler = build_scheduler(
optimizer,
cfg.SOLVER.WARMUP_ITERS,
cfg.SOLVER.START_ITERS,
cfg.SOLVER.END_ITERS,
cfg.SOLVER.LR_SCALE,
)
# Train from checkpoint with fixed iteration number
iter0 = 0
# Set loss function
loss_fn = make_loss(cfg)
# Set psnr threshold to automatically stop the program
psnr_thres = args.psnr_thres
# Train model
do_train(
cfg,
render,
train_loader,
val_loader,
optimizer,
scheduler,
loss_fn,
writer,
resume_epoch=iter0,
psnr_thres=psnr_thres,
output_dir=output_dir,
)