-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrainer.py
378 lines (333 loc) · 15 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import os
from tqdm import tqdm
import time
import torch
import torch.nn as nn
from importlib import import_module
from .optimizer import Optimizer
from model import Model
from data import Data
import random
import numpy as np
from util.logger import Logger
from datetime import datetime
import pickle
import lmdb
import cv2
from os.path import join, dirname
from torch.nn.utils import clip_grad_norm_
from data.utils import prepare, prepare_reverse
from .metrics import psnr_calculate, ssim_calculate, lpips_calculate, AverageMeter
from .loss import loss_parse
from data.distortion_prior import distortion_map
class Trainer(object):
def __init__(self, para):
self.para = para
def run(self):
# recoding parameters
self.para.time = datetime.now()
logger = Logger(self.para)
logger.record_para()
# training
if not self.para.test_only:
proc(self.para)
# test
test(self.para, logger)
# data parallel training
def proc(para):
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
# set random seed
torch.manual_seed(para.seed)
torch.cuda.manual_seed(para.seed)
random.seed(para.seed)
np.random.seed(para.seed)
# create logger
logger = Logger(para)
# create model
logger('building {} model ...'.format(para.model), prefix='\n')
model = Model(para).model
model.cuda()
logger('model structure:', model, verbose=False)
# create criterion according to the loss function
module = import_module('train.loss')
criterion = getattr(module, 'Loss')(para).cuda()
# create measurement according to metrics
metrics_name = para.metrics
module = import_module('train.metrics')
metrics = getattr(module, metrics_name)().cuda()
# create optimizer
opt = Optimizer(para, model)
# distributed data parallel
model = nn.DataParallel(model)
# create dataloader
logger('loading {} dataloader ...'.format(para.dataset), prefix='\n')
data = Data(para)
train_loader = data.dataloader_train
valid_loader = data.dataloader_valid
# optionally resume from a checkpoint
if para.resume:
if os.path.isfile(para.resume_file):
checkpoint = torch.load(para.resume_file, map_location=lambda storage, loc: storage.cuda(0))
logger('loading checkpoint {} ...'.format(para.resume_file))
logger.register_dict = checkpoint['register_dict']
para.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
opt.optimizer.load_state_dict(checkpoint['optimizer'])
opt.scheduler.load_state_dict(checkpoint['scheduler'])
else:
logger('no check point found at {}'.format(para.resume_file))
# training and validation
for epoch in range(para.start_epoch, para.end_epoch + 1):
train(train_loader, model, criterion, metrics, opt, epoch, para, logger)
valid(valid_loader, model, criterion, metrics, epoch, para, logger)
# save checkpoint
is_best = logger.is_best(epoch)
checkpoint = {
'epoch': epoch + 1,
'model': para.model,
'state_dict': model.state_dict(),
'register_dict': logger.register_dict,
'optimizer': opt.optimizer.state_dict(),
'scheduler': opt.scheduler.state_dict()
}
logger.save(checkpoint, is_best)
# reset DALI iterators
train_loader.reset()
valid_loader.reset()
def train(train_loader, model, criterion, metrics, opt, epoch, para, logger):
model.train()
logger('[Epoch {} / lr {:.2e}]'.format(
epoch, opt.get_lr()
), prefix='\n')
losses_meter = {}
_, losses_name = loss_parse(para.loss)
losses_name.append('all')
for loss_name in losses_name:
losses_meter[loss_name] = AverageMeter()
measure_meter = AverageMeter()
batchtime_meter = AverageMeter()
start = time.time()
end = time.time()
pbar = tqdm(total=len(train_loader), ncols=80)
for inputs, labels in train_loader:
# forward
inputs = inputs.cuda()
labels = labels.cuda()
outputs = model(inputs)
if para.model.startswith('JCD'):
imgs, masks, flows = outputs
losses = criterion.rscd_forward(imgs, labels, masks, flows)
outputs = imgs[0].unsqueeze(dim=1)
else:
losses = criterion(outputs, labels)
measure = metrics(outputs.detach(), labels)
for key in losses_name:
losses_meter[key].update(losses[key].detach().item(), inputs.size(0))
measure_meter.update(measure.detach().item(), inputs.size(0))
# backward and optimize
opt.zero_grad()
loss = losses['all']
loss.backward()
# clip the grad
clip_grad_norm_(model.parameters(), max_norm=20, norm_type=2)
opt.step()
# measure elapsed time
batchtime_meter.update(time.time() - end)
end = time.time()
pbar.update(para.batch_size)
pbar.close()
# record info
logger.register(para.loss + '_train', epoch, losses_meter['all'].avg)
logger.register(para.metrics + '_train', epoch, measure_meter.avg)
# show info
logger('[train] epoch time: {:.2f}s, average batch time: {:.2f}s'.format(end - start, batchtime_meter.avg),
timestamp=False)
logger.report([[para.loss, 'min'], [para.metrics, 'max']], state='train', epoch=epoch)
msg = '[train]'
for key, meter in losses_meter.items():
if key == 'all': continue
msg += ' {} : {:4f};'.format(key, meter.avg)
logger(msg, timestamp=False)
# adjust learning rate
opt.lr_schedule()
def valid(valid_loader, model, criterion, metrics, epoch, para, logger):
model.eval()
losses_meter = {}
_, losses_name = loss_parse(para.loss)
losses_name.append('all')
for loss_name in losses_name:
losses_meter[loss_name] = AverageMeter()
measure_meter = AverageMeter()
batchtime_meter = AverageMeter()
start = time.time()
end = time.time()
pbar = tqdm(total=len(valid_loader), ncols=80)
with torch.no_grad():
for inputs, labels in valid_loader:
inputs = inputs.cuda()
labels = labels.cuda()
outputs = model(inputs)
if para.model.startswith('JCD'):
imgs, masks, flows = outputs
losses = criterion.rscd_forward(imgs, labels, masks, flows)
outputs = imgs[0].unsqueeze(dim=1)
else:
losses = criterion(outputs, labels, valid_flag=True)
measure = metrics(outputs.detach(), labels)
for key in losses_name:
losses_meter[key].update(losses[key].detach().item(), inputs.size(0))
measure_meter.update(measure.detach().item(), inputs.size(0))
# measure elapsed time
batchtime_meter.update(time.time() - end)
end = time.time()
pbar.update(para.batch_size)
pbar.close()
# record info
logger.register(para.loss + '_valid', epoch, losses_meter['all'].avg)
logger.register(para.metrics + '_valid', epoch, measure_meter.avg)
# show info
logger('[valid] epoch time: {:.2f}s, average batch time: {:.2f}s'.format(end - start, batchtime_meter.avg),
timestamp=False)
logger.report([[para.loss, 'min'], [para.metrics, 'max']], state='valid', epoch=epoch)
msg = '[valid]'
for key, meter in losses_meter.items():
if key == 'all': continue
msg += ' {} : {:4f};'.format(key, meter.avg)
logger(msg, timestamp=False)
def test(para, logger):
logger('{} image results generating ...'.format(para.dataset), prefix='\n')
if not para.test_only:
para.test_checkpoint = join(logger.save_dir, 'model_best.pth.tar')
if para.test_save_dir == None:
para.test_save_dir = logger.save_dir
datasetType = para.dataset
lmdb_type = 'test'
if para.dataset.startswith('fastec_rs'):
B, H, W, C = 1, 480, 640, 3
elif para.dataset.startswith('rscd'):
B, H, W, C = 1, 480, 640, 3
else:
raise NotImplementedError
modelName = para.model.lower()
model = Model(para).model.cuda()
checkpointPath = para.test_checkpoint
checkpoint = torch.load(checkpointPath, map_location=lambda storage, loc: storage.cuda())
model = nn.DataParallel(model)
model.load_state_dict(checkpoint['state_dict'])
data_test_path = join(para.data_root, datasetType, datasetType[:-4] + lmdb_type)
data_test_gt_path = join(para.data_root, datasetType, datasetType[:-4] + lmdb_type + '_gt')
env_inp = lmdb.open(data_test_path, map_size=int(3e10))
env_gt = lmdb.open(data_test_gt_path, map_size=int(3e10))
txn_inp = env_inp.begin()
txn_gt = env_gt.begin()
# load dataset info
data_test_info_path = join(para.data_root, datasetType, datasetType[:-4] + 'info_{}.pkl'.format(lmdb_type))
with open(data_test_info_path, 'rb') as f:
seqs_info = pickle.load(f)
# PSNR, SSIM recorder
PSNR = AverageMeter()
SSIM = AverageMeter()
LPIPS = AverageMeter()
timer = AverageMeter()
results_register = set()
for seq_idx in range(seqs_info['num']):
logger('seq {:03d} image results generating ...'.format(seq_idx))
torch.cuda.empty_cache()
save_dir = join(para.test_save_dir, datasetType + '_results_test', '{:03d}'.format(seq_idx))
os.makedirs(save_dir, exist_ok=True) # create the dir if not exist
start = 0
end = para.test_frames
while (True):
input_seq = []
label_seq = []
for frame_idx in range(start, end):
code = '%03d_%08d' % (seq_idx, frame_idx)
code = code.encode()
img_inp = txn_inp.get(code)
img_inp = np.frombuffer(img_inp, dtype='uint8')
img_inp = prepare(img_inp.reshape(H, W, C), normalize=True)
img_inp = np.concatenate((img_inp, distortion_map(H, W, (H - 1) / 2.).numpy()[..., np.newaxis]),
axis=2)
img_gt = txn_gt.get(code)
img_gt = np.frombuffer(img_gt, dtype='uint8')
img_gt = prepare(img_gt.reshape(H, W, C), normalize=True)
input_seq.append(img_inp.transpose((2, 0, 1))[np.newaxis, :])
label_seq.append(img_gt.transpose((2, 0, 1))[np.newaxis, :])
input_seq = np.concatenate(input_seq)[np.newaxis, :]
label_seq = np.concatenate(label_seq)[np.newaxis, :]
model.eval()
with torch.no_grad():
input_seq = torch.from_numpy(input_seq).float().cuda()
label_seq = torch.from_numpy(label_seq).float().cuda()
if para.model.startswith('JCD'):
time_start = time.time()
output_seq = model(input_seq)
time_end = time.time() - time_start
timer.update(time_end)
imgs, masks, flows = output_seq
output_seq = imgs[0].unsqueeze(dim=1)
output_seq = output_seq.clamp(0, 1.0).squeeze(dim=0)
else:
time_start = time.time()
output_seq = model(input_seq).clamp(0, 1.0).squeeze(dim=0)
timer.update(time.time() - time_start)
for frame_idx in range(para.past_frames, end - start - para.future_frames):
img_inp = input_seq.squeeze()[frame_idx].squeeze()
img_inp = img_inp.detach().cpu().numpy().transpose((1, 2, 0))[:, :, :3]
img_inp = prepare_reverse(img_inp, normalize=True).astype(np.uint8)
img_inp_path = join(save_dir, '{:08d}_input.png'.format(frame_idx + start))
img_gt = label_seq.squeeze()[frame_idx].squeeze()
img_gt = img_gt.detach().cpu().numpy().transpose((1, 2, 0))
img_gt = prepare_reverse(img_gt, normalize=True).astype(np.uint8)
img_gt_path = join(save_dir, '{:08d}_gt.png'.format(frame_idx + start))
img_out = output_seq[frame_idx - para.past_frames]
img_out = img_out.detach().cpu().numpy().transpose((1, 2, 0))
img_out = prepare_reverse(img_out, normalize=True).astype(np.uint8)
img_out_path = join(save_dir, '{:08d}_{}.png'.format(frame_idx + start, modelName))
cv2.imwrite(img_inp_path, img_inp)
cv2.imwrite(img_gt_path, img_gt)
cv2.imwrite(img_out_path, img_out)
if img_out_path not in results_register:
results_register.add(img_out_path)
PSNR.update(psnr_calculate(img_out, img_gt))
SSIM.update(ssim_calculate(img_out, img_gt))
LPIPS.update(lpips_calculate(img_out, img_gt))
if end == seqs_info[seq_idx]['length']:
break
else:
start = end - para.future_frames - para.past_frames
end = start + para.test_frames
if end > seqs_info[seq_idx]['length']:
end = seqs_info[seq_idx]['length']
start = end - para.test_frames
logger('Test images : {}'.format(PSNR.count), prefix='\n')
logger('Test PSNR : {}'.format(PSNR.avg))
logger('Test SSIM : {}'.format(SSIM.avg))
logger('Test LPIPS : {}'.format(LPIPS.avg))
logger('Average time : {}'.format(timer.avg))
if para.video:
logger('{} video results generating ...'.format(para.dataset), prefix='\n')
marks = ['Input', modelName, 'GT']
path = join(para.test_save_dir, datasetType + '_results_test')
for i in range(seqs_info['num']):
logger('seq {:03d} video result generating ...'.format(i))
img2video(path, (3 * W, 1 * H), seq_num=i, frames=seqs_info[i]['length'], save_dir=path, marks=marks,
fp=para.past_frames, ff=para.future_frames)
# generate video
def img2video(path, size, seq_num, frames, save_dir, marks, fp, ff, fps=10):
file_path = join(save_dir, '{:03d}.avi'.format(seq_num))
os.makedirs(dirname(save_dir), exist_ok=True) # create the dir if not exist
path = join(path, '{:03d}'.format(seq_num))
fourcc = cv2.VideoWriter_fourcc(*"MJPG")
video = cv2.VideoWriter(file_path, fourcc, fps, size)
for i in range(fp, frames - ff):
imgs = []
for j in range(len(marks)):
img_path = join(path, '{:08d}_{}.png'.format(i, marks[j].lower()))
img = cv2.imread(img_path)
img = cv2.putText(img, marks[j], (60, 60), cv2.FONT_HERSHEY_PLAIN, 2.0, (0, 0, 255), 2)
imgs.append(img)
frame = np.concatenate(imgs, axis=1)
video.write(frame)
video.release()