- Topic - Image Super Resolution
- Paper - Learning a Single Convolutional Super-Resolution Network for Multiple Degradations
- Paper Link - https://arxiv.org/pdf/1712.06116v2.pdf
make run
python=3.8
pytorch=1.7.1
cudatoolkit=10.2
.
├── docs
| ├── TeamKota-MidEvalReport.pdf
| ├── Project Proposal
│ ├── Method.pdf
│ └── TeamKota-ProjectProposal.pdf
├── README.md
├── Makefile
├── data
├── BSDS300
├── DIV2K_train_HR
├── waterloo
├── environment.yml
└── src
├── dataset.py
├── kernels.py
├── logger.py
├── main.py
├── model.py
├── train.py
└── utils.py
conda env create --file environment.yaml
- use
Name
in main.py
Id | Name | Info | Link |
---|---|---|---|
1 | DIV2K_train_HR | HR images | http://data.vision.ee.ethz.ch/cvl/DIV2K/DIV2K_train_HR.zip |
2 | DIV2K_train_LR_bicubic_X2 | Bicubic x2 downscaling | http://data.vision.ee.ethz.ch/cvl/DIV2K/DIV2K_train_LR_bicubic_X2.zip |
3 | Waterloo Exploration Database | Pristine Natural Images | http://ivc.uwaterloo.ca/database/WaterlooExploration/exploration_database_and_code.rar |
4 | Berkeley Segementation Dataset and Benchmark (BSDS300) | Natural Images with greyscale and color segementation | https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/BSDS300-images.tgz |