Skip to content
New issue

Have a question about this project? # for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “#”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? # to your account

Implement Multi-Objective Optimization (optimization.py) #6

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
48 changes: 48 additions & 0 deletions optimization.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
import random
import numpy as np
import matplotlib.pyplot as plt
from deap import base, creator, tools, algorithms

# Define multi-objective optimization: Maximize utility, Minimize risk
creator.create("FitnessMulti", base.Fitness, weights=(1.0, -1.0)) # Max utility, Min risk
creator.create("Individual", list, fitness=creator.FitnessMulti)

def evaluate(individual):
utility = individual[0] # Example: Utility function
risk = individual[1] # Example: Risk function (to be minimized)
return utility, risk

toolbox = base.Toolbox()
toolbox.register("attr_float", random.uniform, 0, 10) # Random values between 0 and 10
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_float, n=2)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)

toolbox.register("mate", tools.cxBlend, alpha=0.5)
toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2)
toolbox.register("select", tools.selNSGA2)
toolbox.register("evaluate", evaluate)

def main():
population = toolbox.population(n=100)
hof = tools.HallOfFame(10)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", np.mean, axis=0)

algorithms.eaMuPlusLambda(population, toolbox, mu=100, lambda_=200,
cxpb=0.7, mutpb=0.2, ngen=50,
stats=stats, halloffame=hof, verbose=True)

return population, hof

if __name__ == "__main__":
population, hof = main()
pareto_front = np.array([ind.fitness.values for ind in hof])

# Plot Pareto Front
plt.scatter(pareto_front[:, 0], pareto_front[:, 1], c="red", label="Pareto Front")
plt.xlabel("Utility (Maximize)")
plt.ylabel("Risk (Minimize)")
plt.title("Pareto Front of Multi-Objective Optimization")
plt.legend()
plt.grid()
plt.show()