Skip to content

Refactor median calculation logic using binary search for improved clarity #150

New issue

Have a question about this project? # for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “#”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? # to your account

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
43 changes: 18 additions & 25 deletions 0004-median-of-two-sorted-arrays/Code/1.java
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
public class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
// ʹnums1��Ϊ�϶�����,����������߼����ٶ�,ͬʱ���Ա���һЩ�߽�����
// Ensure nums1 is the smaller array
if (nums1.length > nums2.length) {
int[] temp = nums1;
nums1 = nums2;
Expand All @@ -9,46 +9,39 @@ public double findMedianSortedArrays(int[] nums1, int[] nums2) {

int len1 = nums1.length;
int len2 = nums2.length;
int leftLen = (len1 + len2 + 1) / 2; //������ϲ�&�����,���ߵij���
int leftLen = (len1 + len2 + 1) / 2; // Half of the total length (rounded up)

// ������1���ж��ּ���
int start = 0;
int end = len1;
while (start <= end) {
// ��������ı�����A,B��λ��(��1��ʼ����)
// count1 = 2 ��ʾ num1 ����ĵ�2������
// ��index��1
int count1 = start + ((end - start) / 2);
// Partition indices in nums1 and nums2
int count1 = start + (end - start) / 2;
int count2 = leftLen - count1;

if (count1 > 0 && nums1[count1 - 1] > nums2[count2]) {
// A��B��next��Ҫ��
// Move partition in nums1 to the left
end = count1 - 1;
} else if (count1 < len1 && nums2[count2 - 1] > nums1[count1]) {
// B��A��next��Ҫ��
// Move partition in nums1 to the right
start = count1 + 1;
} else {
// ��ȡ��λ��
int result = (count1 == 0)? nums2[count2 - 1]: // ��num1������������������ұ�
(count2 == 0)? nums1[count1 - 1]: // ��num2������������������ұ�
Math.max(nums1[count1 - 1], nums2[count2 - 1]); // �Ƚ�A,B
if (isOdd(len1 + len2)) {
return result;
// We have found the correct partition
int result = (count1 == 0) ? nums2[count2 - 1] : // If count1 is 0, take from nums2
(count2 == 0) ? nums1[count1 - 1] : // If count2 is 0, take from nums1
Math.max(nums1[count1 - 1], nums2[count2 - 1]); // Maximum of left side
if ((len1 + len2) % 2 == 1) {
return result; // If odd, return the max of the left side
}

// ����ż�����������
int nextValue = (count1 == len1) ? nums2[count2]:
(count2 == len2) ? nums1[count1]:
// If even, find the next smallest element from the right side
int nextValue = (count1 == len1) ? nums2[count2] :
(count2 == len2) ? nums1[count1] :
Math.min(nums1[count1], nums2[count2]);
return (result + nextValue) / 2.0;

return (result + nextValue) / 2.0; // Return the average of left and right sides
}
}

return Integer.MIN_VALUE; // ���Ե���������
}

// ��������true,ż������false
private boolean isOdd(int x) {
return (x & 1) == 1;
return Integer.MIN_VALUE; // This should never happen if input arrays are valid
}
}