Skip to content
New issue

Have a question about this project? # for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “#”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? # to your account

Draft PR: Will be working on differential equations function transformations. #3391

Draft
wants to merge 2 commits into
base: master
Choose a base branch
from
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
105 changes: 105 additions & 0 deletions src/systems/diffeqs/basic_transformations.jl
Original file line number Diff line number Diff line change
Expand Up @@ -46,6 +46,7 @@ Optimal Transport Approach
Abhishek Halder, Kooktae Lee, and Raktim Bhattacharya
https://abhishekhalder.bitbucket.io/F16ACC2013Final.pdf
"""

function liouville_transform(sys::AbstractODESystem)
t = get_iv(sys)
@variables trJ
Expand All @@ -55,3 +56,107 @@ function liouville_transform(sys::AbstractODESystem)
vars = [unknowns(sys); trJ]
ODESystem(neweqs, t, vars, parameters(sys), checks = false)
end

"""
$(TYPEDSIGNATURES)

Transforms an ODE system by applying a set of variable transformations and their inverses (back-transformations).
Returns the new set of differential equations and the updated list of variables after substitution and simplification. This is useful for redefining an ODE system in terms of new dependent variables while preserving the dynamics.

For example, transforming `x` to `z = exp(x)` redefines the system in terms of `z`, adjusting the equations accordingly.

Example:

```julia
using ModelingToolkit

@parameters t α
@variables x(t) z(t)
D = Differential(t)
eqs = [D(x) ~ α*x]
sys = ODESystem(eqs, t, [x], [α])
transformations = [z => exp(x)]
back_transformations = [x => log(z)]
new_eqs, new_vars = transform_eqs(sys, transformations, back_transformations)
# new_eqs: [D(z) ~ α*z], new_vars: [z]
"""


function transform_eqs(sys::ODESystem, transformations, back_transformations)
all_dept_vars = unknowns(sys)
diff_eqs = equations(sys)
diff_eqs_map = Dict(eq.lhs => eq.rhs for eq in diff_eqs)
eq_transformations = [k ~ v for (k, v) in transformations]

new_vars = [] # transformed variables
mutable_vars = [] # mutable variables
for tr in transformations
push!(new_vars, tr.first)
change_var = get_variables(tr.second)

# change_var can also be a parameter like α. hence the check.
for every_change_var in change_var
for all_var in all_dept_vars
if isequal(every_change_var,all_var)
push!(mutable_vars, all_var)
end
end
end
end

current_vars = setdiff(vcat(all_dept_vars, new_vars), mutable_vars)

# Differentiating on both sides of the transformation
dzdt = Symbolics.derivative(last.(transformations), t)
dz = Symbolics.derivative(first.(transformations), t)
new_eqs = Equation[]
for (dzi, dzdti) in zip(dz, dzdt)
updated_dzdti = substitute(dzdti, diff_eqs_map)
exp = dzi ~ updated_dzdti
updated_exp = substitute(exp, Dict(back_transformations))
push!(new_eqs, Symbolics.simplify(updated_exp))
end

return new_eqs, current_vars
end

### `substitute_defaults`


"""
$(TYPEDSIGNATURES)

Substitutes default values into transformation expressions for an ODE system, returning a dictionary of new default values for transformed variables. Optionally evaluates at a specific time `t_val`. Useful for initializing transformed systems with consistent initial conditions.

For example, if `x => 1.0` is a default and `z = exp(x)` is a transformation, it computes `z => exp(1.0)`.

Example:

```julia
using ModelingToolkit

@parameters t α
@variables x(t) z(t)
eqs = [Differential(t)(x) ~ α*x]
sys = ODESystem(eqs, t, [x], [α]; defaults=Dict(x => 1.0))
transformations = [z => exp(x)]
new_defaults = substitute_defaults(sys, transformations)
# new_defaults: Dict(z => 2.718281828459045)
"""

function substitute_defaults(sys::ODESystem, transformations, t_val=missing)
existing_defaults = ModelingToolkit.get_defaults(sys)
new_defs = Dict()
for tr in transformations
ex = substitute(last(tr), existing_defaults)
if !ismissing(t_val)
ex = substitute(ex, t => t_val)
end
vars = get_variables(ex)
if length(vars) == 0
new_defs[first(tr)] = ex
end
end

return new_defs
end