-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwavefront_main.m
355 lines (279 loc) · 10.1 KB
/
wavefront_main.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
function [forwBackVel, leftRightVel, rotVel, finish] = wavefront_main(...
pts, contacts, position, orientation, varargin)
% Check varargin
if length(varargin) == 2
goal_pos = varargin{1}; % Goal position
env_map = varargin{2}; % Environment
debug = true; % Debug plot, it is true by default and can be specified as vararg{3}
elseif length(varargin) == 3
goal_pos = varargin{1};
env_map = varargin{2};
debug = varargin{3};
else
error("Wrong number of additional arguments provided: %d\n", length(varargin))
end
% get the current position and orientation
pos = position(1:2);
phi = orientation(3);
% Define max velocities and regulator gains
u_max = 10;
w_max = 10;
Kp_linear = 20;
Kp_angular = 10;
% Tolerance to reach a point and tolerance of reaching goal
goal_tol = 1e-3;
through_tol = 0.2;
% Size of the env't in (m) x = [-7.5m to 7.5m] and y = [-7.5m to 7.5m]
size_env = [15 15];
% Define percistent variables
persistent path size_map debugplot n;
% Where path contains through which the shortest path will passthrough
% size_map is the size of the map (pixel X pixel)
% debugplot to plot postition of the robot on the path while moving
% Initialize the robot control variables (returned by this function)
finish = false;
forwBackVel = 0;
leftRightVel = 0;
rotVel = 0;
% Initialization
if isempty(path)
% Load image as a mtrix of pixel intensities
map = double(imread(env_map)');
% Size of the map
size_map = size(map);
% Start location on the map
start_on_map = env2map(pos, size_map, size_env);
% Goal location on the map
goal_on_map = env2map(goal_pos, size_map, size_env);
% Use wavefron algorithm to get a new map with wave connecting
% start_on_map and goal_on_map
map = wavefront(start_on_map, goal_on_map, map, debug);
% Backpropagate the shortest path
path = backpropagate(goal_on_map, map, debug);
% Transform path from map to environment
path = map2env(path, size_map, size_env);
if debug
hold on
% Plot the moving robot as a green circle
debugplot = plot(env2map(pos, size_map, size_env), 'go', MarkerSize=10);
hold off
end
elseif debug
loc = env2map(pos, size_map, size_env);
set(debugplot, 'Xdata', loc(1));
set(debugplot, 'Ydata', loc(2));
end
% Follow the waypoints on the path
% Take the first cell on the path
diff_pos = path(end, :) - pos;
norm_diff = norm(diff_pos);
% Check if we have multiple waypoints on the path or this is the last cell
if size(path, 1) > 1
% We have multiple points, we want to go through all of them with max
% velocity magnetude, vel.
vel = u_max;
% check if a way point is reached
if norm_diff < through_tol
% If so remove the reached waypoint from the path
path = path(1:end-1, :);
% compute error for the next way point
diff_pos = path(end, :) - pos;
norm_diff = norm(diff_pos);
end
else
% This is the last waypoint on the path
if norm_diff < goal_tol
% Goal is reched
% Stop the robot and clean exit
leftRightVel = 0;
forwBackVel = 0;
rotVel = 0;
finish = true;
return;
else
% move with a velocity proportional to the error
% Regulator output
Pl = Kp_linear * norm_diff;
% Limit Pl to get vel
vel = max(min(Pl, u_max), -u_max);
end
end
% Linear velocity computation
% Direction
direction = diff_pos/norm_diff;
% Velocity wrt global frame
u_global = vel * direction;
% Velocity wrt local frame
u_local = global2local(u_global, phi);
% Linear velocity commands
leftRightVel = u_local(1);
forwBackVel = u_local(2);
% Rotational velocity computation
% Make the robot face the direction of motion
diff_phi = angdiff(atan2(diff_pos(2), diff_pos(1)), phi - pi/2);
% Regulator output
Pr = Kp_angular * diff_phi;
% Limit Pr to get rotVel
rotVel = max(min(Pr, w_max), -w_max);
end
function on_map = env2map(on_env, size_map, size_env)
% Make a transformation from environment to map
on_map = round((on_env + size_env / 2) .* (size_map ./ size_env));
end
function on_env = map2env(on_map, size_map, size_env)
% Make a transformation from map to environment
on_env = on_map .* (size_env ./ size_map) - size_env / 2;
end
function u_local = global2local(u_global, phi)
% Transform velocity from global to local frame
% Rotation matrix from global to local frame
R = [cos(phi), -sin(phi);
sin(phi), cos(phi)];
% Velocity in the local frame
u_local = R'*u_global';
end
function map = wavefront(start_on_map, goal_on_map, map, debug)
% This function computes a new map with wavefronts using wavefront
% algorith. It accepts start_on_map, goal_on_map, map, and a bool for
% debug plot
if debug
% Initialize a figure
fig = figure(1);
colormap(fig, gray(2));
ax = axes(fig);
% clear axes
cla(ax);
% adjust limit to fit the map
xlim(ax, [1 numrows(map)]);
ylim(ax, [1 numcols(map)]);
% plot
imagesc(ax, 'CData', map');
% label
ylabel('y')
xlabel('x')
% pause to animate
pause(0.1);
end
% map size
size_map = size(map);
% Define cost to travel between adjusent cells cost4 or cost8 can be
% defined. Here we are using cost8 as it gives better result.
cost8 = [sqrt(2) 1 sqrt(2);
1 0 1;
sqrt(2) 1 sqrt(1)];
% Enlarge obstacles to clear the robot from the wall 7x7 square is used
map = imerode(map, ones(7));
% Update debug plot
if debug
imagesc(ax, 'CData', map');
pause(0.1);
end
% Set walls as NaN and floor as Inf
map(map ~= 0) = Inf; % floor
map(map == 0) = NaN; % wall
% Put zero at the start
map(start_on_map(1), start_on_map(2)) = 0;
% Start the wave from the start_on_map
front = map == 0; % start point of the wavefront
map_copy = map; % Make a copy of the map
% Update debug plot
if debug
numColors = 1.5 * mean(size_map);
cmap = generate_color(numColors);
colormap(fig, flip(cmap));
end
while true
% Update the wavefront at each iteration
if debug
map_plot = map; map_plot(front) = 1;
imagesc(ax, 'CData', map_plot', [0 1.5 * mean(size_map)]);
pause(0.1);
end
% find index of front and clear front for reuse
front_loc = find(front);
front(:) = 0;
% Loop over the front of the wave computing new cost values
for k = 1:length(front_loc)
% finding row and column of the current front location from idx
[row, col] = ind2sub(size_map, front_loc(k));
% 8 neighborhs of the front location
neighbor_rows = max(row - 1, 1):min(row + 1, size_map(1));
neighbor_cols = max(col - 1, 1):min(col + 1, size_map(2));
% Compute cost values
cost = map_copy(row, col) + cost8(neighbor_rows - row + 2, neighbor_cols - col + 2);
% Apply the new map values if it reduces the cost
map(neighbor_rows, neighbor_cols) = min(map(neighbor_rows, neighbor_cols), cost, 'includenan');
% New fronts
front(neighbor_rows, neighbor_cols) = max(map(neighbor_rows, neighbor_cols) == cost, front(neighbor_rows, neighbor_cols));
end
% Shouldn't repeat fronts
front(front_loc) = 0;
map_copy = map;
% Check if goal is reached
if ~isinf(map(goal_on_map(1), goal_on_map(2)))
break;
end
end
if debug
imagesc(ax, 'CData', map', [0 1.5 * mean(size_map)]);
end
end
function path = backpropagate(goal_on_map, map, debug)
% Back propates the shortest path from goal to start using the cost of
% cells
% Extract the row and column indices of the goal cell from the input argument
row = goal_on_map(1);
col = goal_on_map(2);
% If debug is true, plot the goal cell as a black star on the map
if debug
hold on
plot(row, col, 'k*')
end
% Initialize the path as an empty matrix
path = [];
% While we haven't reached the start cell (which has a cost of 0)
while map(row, col) ~= 0
% Add the current cell to the path
path = [path; [row col]];
% Mark the current cell as visited by setting its cost to infinity
map(row, col) = Inf;
% Find the indices of the 3x3 neighborhood around the current cell
neighbor_rows = max(row - 1, 1):min(row + 1, numrows(map));
neighbor_cols = max(col - 1, 1):min(col + 1, numcols(map));
% Find the index of the cell in the neighborhood with the lowest cost
[~, idx] = min(map(neighbor_rows, neighbor_cols), [], 'all', 'linear');
% Convert the linear index to row and column indices
[row_idx, col_idx] = ind2sub([3 3], idx);
% Update the row and column indices to move to the lowest cost cell
row = row + row_idx - 2;
col = col + col_idx -2;
% If we encounter a local minimum that is not the goal, raise an error
if isinf(map(row, col))
error('Could not reach the goal')
end
end
% If debug is true, plot the shortest path as a red line on the map
if debug
plot(path(:, 1), path(:, 2), 'r-', 'LineWidth', 2)
hold off
end
end
function cmap = generate_color(numColors)
% This function returns a colormap for visualizing the wavefront algorithm in
% the debug plot. The colormap consists of a gradient from light blue to dark
% blue, with the last row representing walls.
% Define the RGB values for the light blue color
R0 = 173; G0 = 216; B0 = 230;
% Define the RGB values for the dark blue color
Rf = 23; Gf = 58; Bf = 85;
% Define the RGB values for the wall color (gray)
Rw = 128; Gw = 128; Bw = 128;
% Use linspace to create a set of evenly-spaced RGB values between the
% light blue color and the dark blue color. The number of colors in the colormap
% is specified by the input argument numColors.
cmap = [linspace(R0, Rf, numColors)' / 255, ...
linspace(G0, Gf, numColors)' / 255, ...
linspace(B0, Bf, numColors)' / 255];
% Set the last row of the colormap to gray to represent walls.
cmap(end, :) = [Rw, Gw, Bw] / 255;
end