Skip to content

bitsandbytes-foundation/bitsandbytes

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

bitsandbytes

License Downloads Nightly Unit Tests GitHub Release PyPI - Python Version

bitsandbytes enables accessible large language models via k-bit quantization for PyTorch. We provide three main features for dramatically reducing memory consumption for inference and training:

  • 8-bit optimizers uses block-wise quantization to maintain 32-bit performance at a small fraction of the memory cost.
  • LLM.int8() or 8-bit quantization enables large language model inference with only half the required memory and without any performance degradation. This method is based on vector-wise quantization to quantize most features to 8-bits and separately treating outliers with 16-bit matrix multiplication.
  • QLoRA or 4-bit quantization enables large language model training with several memory-saving techniques that don't compromise performance. This method quantizes a model to 4-bits and inserts a small set of trainable low-rank adaptation (LoRA) weights to allow training.

The library includes quantization primitives for 8-bit & 4-bit operations, through bitsandbytes.nn.Linear8bitLt and bitsandbytes.nn.Linear4bit and 8-bit optimizers through bitsandbytes.optim module.

System Requirements

bitsandbytes has the following minimum requirements for all platforms:

  • Python 3.9+
  • PyTorch 2.2+
    • Note: While we aim to provide wide backwards compatibility, we recommend using the latest version of PyTorch for the best experience.

Accelerator support:

Platform Accelerator Hardware Requirements Support Status
🐧 Linux
x86-64 ◻️ CPU 〰️ Partial Support
🟩 NVIDIA GPU SM50+ minimum
SM75+ recommended
βœ… Full Support *
πŸŸ₯ AMD GPU gfx90a, gfx942, gfx1100 🚧 In Development
🟦 Intel XPU Data Center GPU Max Series (Ponte Vecchio)
Arc A-Series (Alchemist)
Arc B-Series (Battlemage)
🚧 In Development
aarch64 ◻️ CPU 〰️ Partial Support
🟩 NVIDIA GPU SM75, SM80, SM90, SM100 βœ… Full Support *
πŸͺŸ Windows
x86-64 ◻️ CPU AVX2 〰️ Partial Support
🟩 NVIDIA GPU SM50+ minimum
SM75+ recommended
βœ… Full Support *
🟦 Intel XPU Arc A-Series (Alchemist)
Arc B-Series (Battlemage)
🚧 In Development
🍎 macOS
arm64 ◻️ CPU / Metal Apple M1+ ❌ Under consideration

* Accelerated INT8 requires SM75+.

πŸ“– Documentation

❀️ Sponsors

The continued maintenance and development of bitsandbytes is made possible thanks to the generous support of our sponsors. Their contributions help ensure that we can keep improving the project and delivering valuable updates to the community.

Hugging Face

License

bitsandbytes is MIT licensed.

We thank Fabio Cannizzo for his work on FastBinarySearch which we use for CPU quantization.

How to cite us

If you found this library useful, please consider citing our work:

QLoRA

@article{dettmers2023qlora,
  title={Qlora: Efficient finetuning of quantized llms},
  author={Dettmers, Tim and Pagnoni, Artidoro and Holtzman, Ari and Zettlemoyer, Luke},
  journal={arXiv preprint arXiv:2305.14314},
  year={2023}
}

LLM.int8()

@article{dettmers2022llmint8,
  title={LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale},
  author={Dettmers, Tim and Lewis, Mike and Belkada, Younes and Zettlemoyer, Luke},
  journal={arXiv preprint arXiv:2208.07339},
  year={2022}
}

8-bit Optimizers

@article{dettmers2022optimizers,
  title={8-bit Optimizers via Block-wise Quantization},
  author={Dettmers, Tim and Lewis, Mike and Shleifer, Sam and Zettlemoyer, Luke},
  journal={9th International Conference on Learning Representations, ICLR},
  year={2022}
}