-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathselect_lasiesta.py
67 lines (45 loc) · 1.9 KB
/
select_lasiesta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import json
import cv2
import glob
import natsort
import os
import numpy as np
import PIL
from tqdm import tqdm
RAW_PATH = './data_augmentation/raw_data/LASIESTA_human_dataset/rgb/'
SAVE_PATH = './data_augmentation/raw_data/LASIESTA_human_dataset/select/'
SAVE_RGB_PATH = SAVE_PATH + 'rgb/'
SAVE_MASK_PATH = SAVE_PATH + 'gt/'
SELECT_STEP = 10
os.makedirs(SAVE_RGB_PATH, exist_ok=True)
os.makedirs(SAVE_MASK_PATH, exist_ok=True)
raw_list = glob.glob(RAW_PATH + '/*')
raw_list = natsort.natsorted(raw_list,reverse=True)
sample_dir_idx = 0
image_idx = 0
for samples in tqdm(raw_list, total=len(raw_list)):
print(samples)
sample_dir_idx += 1
rgb_dir_name = samples
mask_dir_name = rgb_dir_name.replace('rgb', 'gt') + '-GT'
rgb_list = glob.glob(os.path.join(rgb_dir_name+'/*.jpg'))
rgb_list = natsort.natsorted(rgb_list, reverse=True)
mask_list = glob.glob(os.path.join(mask_dir_name+'/*.png'))
mask_list = natsort.natsorted(mask_list, reverse=True)
for idx in range(0, len(rgb_list), SELECT_STEP):
image = cv2.imread(rgb_list[idx])
mask = cv2.imread(mask_list[idx])
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
mask = np.where(mask>=1, 255, 0)
mask = np.expand_dims(mask, axis=-1)
# concat_mask = np.concatenate([mask, mask, mask], axis=-1).astype(np.uint8)
# masked_image = image * (concat_mask / 255)
# masked_image = masked_image.astype(np.uint8)
# print(image.shape)
# print(concat_mask.shape)
# print(masked_image.shape)
# vis_img = cv2.hconcat([image, concat_mask, masked_image])
# cv2.imshow('test', vis_img)
# cv2.waitKey(0)
cv2.imwrite(SAVE_RGB_PATH + 'LASIESTA_human_dataset_{0}_idx_{1}.jpg'.format(sample_dir_idx, idx), image)
cv2.imwrite(SAVE_MASK_PATH + 'LASIESTA_human_dataset_{0}_idx_{1}.png'.format(sample_dir_idx, idx), mask)