-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathselect_mhp.py
123 lines (75 loc) · 3.46 KB
/
select_mhp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import json
import cv2
import glob
import natsort
import os
import numpy as np
import PIL
from tqdm import tqdm
import matplotlib.pyplot as plt
RAW_PATH = './data_augmentation/raw_data/LV-MHP-v2/train/rgb/'
SAVE_PATH = './data_augmentation/raw_data/LV-MHP-v2/train/select/'
SAVE_RGB_PATH = SAVE_PATH + 'rgb/'
SAVE_MASK_PATH = SAVE_PATH + 'gt/'
SELECT_STEP = 10
os.makedirs(SAVE_RGB_PATH, exist_ok=True)
os.makedirs(SAVE_MASK_PATH, exist_ok=True)
raw_list = glob.glob(RAW_PATH)
raw_list = natsort.natsorted(raw_list,reverse=True)
sample_dir_idx = 0
image_idx = 0
for samples in tqdm(raw_list, total=len(raw_list)):
sample_dir_idx += 1
rgb_dir_name = samples
mask_dir_name = rgb_dir_name.replace('rgb', 'gt')
rgb_list = glob.glob(os.path.join(rgb_dir_name+'/*.jpg'))
rgb_list = natsort.natsorted(rgb_list, reverse=True)
# mask_list = glob.glob(os.path.join(mask_dir_name+'/*.png'))
# mask_list = natsort.natsorted(mask_list, reverse=True)
for idx in range(len(rgb_list)):
print(rgb_list[idx]) # ./data_augmentation/raw_data/LV-MHP-v2/train/rgb/25790.jpg
rgb_sample_name = rgb_list[idx].split('/')[6]
idx_name = rgb_sample_name.split('.')[0]
rgb_name = rgb_list[idx]
mask_idx = RAW_PATH.replace('rgb', 'gt')
mask_files = glob.glob(os.path.join(mask_idx+ idx_name +'*.png'))
image = cv2.imread(rgb_list[idx])
mask = np.zeros(image.shape[:2])
for mask_file in mask_files:
sample_mask = cv2.imread(mask_file)
# sample_mask = cv2.cvtColor(sample_mask, cv2.COLOR_BGR2GRAY)
sample_mask = sample_mask[:, :, 2]
plt.imshow(sample_mask)
plt.show()
sample_mask = np.where(sample_mask>=1, 1, 0)
mask += sample_mask
mask = np.where(mask>=1, 1, 0).astype(np.uint8)
contours, _ = cv2.findContours(
mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
zero_maks = np.zeros(mask.shape, np.uint8)
zero_maks = cv2.drawContours(zero_maks, contours, -1, 1, thickness=-1)
mask += zero_maks
mask = np.where(mask>=1, 255, 0).astype(np.uint8)
draw_contours = []
rgb_shape = image.shape[:2]
hw_area = rgb_shape[0] * rgb_shape[1]
blank_contours, _ = cv2.findContours(
mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
for i in range(len(blank_contours)):
area = cv2.contourArea(blank_contours[i])
if area <= (hw_area * 0.003):
draw_contours.append(blank_contours[i])
black_mask = cv2.drawContours(mask, draw_contours, -1, 0, thickness=-1)
mask = np.where(black_mask==0, 0, mask)
mask = np.expand_dims(mask, axis=-1)
concat_mask = np.concatenate([mask, mask, mask], axis=-1).astype(np.uint8)
masked_image = image * (concat_mask / 255)
masked_image = masked_image.astype(np.uint8)
print(image.shape)
print(concat_mask.shape)
print(masked_image.shape)
vis_img = cv2.hconcat([image, concat_mask, masked_image])
cv2.imshow('test', vis_img)
cv2.waitKey(0)
# cv2.imwrite(SAVE_RGB_PATH + 'LV-MHP-v2_train_human_dataset_{0}_idx_{1}.jpg'.format(sample_dir_idx, idx), image)
# cv2.imwrite(SAVE_MASK_PATH + 'LV-MHP-v2_train_human_dataset_{0}_idx_{1}.png'.format(sample_dir_idx, idx), mask)