This project analyzes the content of uploaded images to ensure compliance with moderation policies using AWS Rekognition. If an image violates these policies, it will not be uploaded to the system. Accepted images are stored in AWS S3, and metadata such as the image path, creation date, and AWS Rekognition analysis results are saved in a PostgreSQL database.
- Framework: Nest.js
- Database: PostgreSQL
- ORM: TypeORM
- Cloud Services: AWS S3, AWS Rekognition
- Language: TypeScript
- Framework: React
- Build Tool: Vite
- Language: TypeScript
- Styling: CSS
- Libraries: Axios
API/
├── src/
│ ├── constants/
│ ├── controllers/
│ ├── dto/
│ ├── entities/
│ ├── models/
│ ├── services/
│ ├── types/
│ ├── utils/
│ ├── app.module.ts
│ ├── config.ts
│ └── main.ts
├── test/
├── .env
├── .eslintrc.js
├── .prettierrc
├── nest-cli.json
├── package.json
├── tsconfig.build.json
└── tsconfig.json
UI/
├── src/
│ ├── components/
│ ├── hooks/
│ ├── models/
│ ├── services/
│ ├── App.tsx
│ ├── App.css
│ └── main.tsx
├── public/
├── .env
├── .gitignore
├── eslint.config.js
├── index.html
├── package.json
├── tsconfig.app.json
├── tsconfig.json
├── tsconfig.node.json
└── vite.config.ts
- Node.js (v20 or higher)
- npm or yarn
- PostgreSQL
- AWS Account with S3 and Rekognition services enabled
-
Clone the repository:
git clone https://github.com/cristofima/Demo-AWS-ImageModeration cd API
-
Install dependencies:
npm install
-
Copy the
.env
file and rename it to.env.local
:cp .env .env.local
-
Configure environment variables in
.env.local
:DB_NAME= DB_USER= DB_PASSWORD= DB_HOST= AWS_S3_ACCESS_KEY= AWS_S3_SECRET_ACCESS_KEY= AWS_S3_REGION= AWS_S3_BUCKET_NAME= AWS_S3_BUCKET_FOLDER= AWS_REKOGNITION_REGION= AWS_REKOGNITION_ACCESS_KEY= AWS_REKOGNITION_SECRET_ACCESS_KEY=
-
Run the application:
npm run start:local
-
Navigate to the UI directory:
cd ../UI
-
Install dependencies:
npm install
-
Configure environment variables in
.env
:REACT_APP_API_BASE_URL=http://localhost:3000/api
-
Run the application:
npm run dev
The system classifies images into different categories based on AWS Rekognition's analysis. If an image is flagged as inappropriate, it will either be blocked or blurred before being stored.
(No offensive content)
(Contains sensitive content, blurred for safety)
- Endpoint:
POST /api/Posts
- Description: Uploads an image (Post), processes it with AWS Rekognition, and stores it if it passes moderation.
- Request:
{ "image": "(binary file)" }
- Response:
{ "id": 41, "imageIsBlurred": false, "createdAt": "2025-03-01T02:20:34.639Z", "imagePath": "https://demo.s3.us-west-2.amazonaws.com/images/3.jpg" }
- Endpoint:
GET /api/Posts?page=1&limit=12
- Description: Retrieves images (Posts).
- Response:
{ "data": [ { "id": 40, "imageIsBlurred": true, "createdAt": "2025-02-28T21:16:01.583Z", "imagePath": "https://demo.s3.us-west-2.amazonaws.com/images/2.jpg" }, { "id": 39, "imageIsBlurred": true, "createdAt": "2025-02-27T01:44:18.111Z", "imagePath": "https://demo.s3.us-west-2.amazonaws.com/images/1.jpg" }, ... ], "metadata": { "page": 1, "limit": 8, "totalRecords": 38, "totalPages": 5 } }
Cristopher Coronado
If you wish to contribute, follow these steps:
- Fork the repository.
- Create a new branch:
git checkout -b feature-branch-name
- Commit your changes:
git commit -m "Added new feature"
- Push to the branch:
git push origin feature-branch-name
- Open a pull request.