-
Notifications
You must be signed in to change notification settings - Fork 11
Citations
Citation export formats (RIS) and styles (APA, MLA among others) are included as part of a Record's metadata.
This page describes:
- How to determine and configure available citation styles and export formats
- Locate citation metadata within Records
- Retrieve citation styles and exports directly for one or more Record IDs.
Get the list of the available citation styles and export formats via the Info class:
session.info.available_citation_styles
=> [{"Id"=>"abnt", "Label"=>"ABNT"}, {"Id"=>"ama", "Label"=>"AMA"}, {"Id"=>"apa", "Label"=>"APA"}, {"Id"=>"chicago", "Label"=>"Chicago/Turabian: Author-Date"}, {"Id"=>"harvard", "Label"=>"Harvard"}, {"Id"=>"harvardaustralian", "Label"=>"Harvard: Australian"}, {"Id"=>"mla", "Label"=>"MLA"}, {"Id"=>"turabian", "Label"=>"Chicago/Turabian: Humanities"}, {"Id"=>"vancouver", "Label"=>"Vancouver/ICMJE"}]
session.info.available_citation_exports
=> [{"Id"=>"RIS", "Label"=>"RIS Format"}]
Yes, in your Session configuration you can specify a comma separated list of styles via citation_styles_formats
. The default value of all
returns every style currently supported.
session = EBSCO::EDS::Session.new({:user=>'user', :pass=>'secret', :citation_styles_formats=>'mla,apa', :profile=>'eds-api', :guest=>false})
Note: there is only one export format currently supported (RIS) but in the future there may be more added.
Its located in the eds_citation_exports
and eds_citation_styles
fields:
styles = record.eds_citation_styles
=> #<EBSCO::EDS::Citations:0x00007fd95d97db30 @eds_database_id="asn", @eds_accession_number="108974507", @eds_record_id="asn__108974507", @items=[{"id"=>"mla", "label"=>"MLA", "data"=>"Weissman, Kira J. “The Structural Biology of Biosynthetic Megaenzymes.” <i>Nature Chemical Biology</i>, vol. 11, no. 9, Sept. 2015, pp. 660–670. <i>EBSCOhost</i>, doi:10.1038/nchembio.1883.", "caption"=>"Modern Language Assoc.", "section_label"=>"Works Cited"}, {"id"=>"apa", "label"=>"APA", "data"=>"Weissman, K. J. (2015). The structural biology of biosynthetic megaenzymes. <i>Nature Chemical Biology</i>, <i>11</i>(9), 660–670. https://doi.org/10.1038/nchembio.1883", "caption"=>"American Psychological Assoc.", "section_label"=>"References"}]>
exports = record.eds_citation_exports
=> #<EBSCO::EDS::Citations:0x00007fd95cdcc570 @eds_database_id="asn", @eds_accession_number="108974507", @eds_record_id="asn__108974507", @items=[{"id"=>"RIS", "label"=>"RIS Format", "data"=>"TY - JOUR\r\nAU - Weissman, Kira J\r\nT1 - The structural biology of biosynthetic megaenzymes.\r\nJO - Nature Chemical Biology\r\nJF - Nature Chemical Biology\r\nY1 - 2015/09//\r\nVL - 11\r\nIS - 9\r\nM3 - Article\r\nSP - 660\r\nEP - 670\r\nPB - Springer Nature\r\nSN - 15524450\r\nAB - The modular polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) are among the largest and most complicated enzymes in nature. In these biosynthetic systems, independently folding protein domains, which are organized into units called 'modules', operate in assembly-line fashion to construct polymeric chains and tailor their functionalities. Products of PKSs and NRPSs include a number of blockbuster medicines, and this has motivated researchers to understand how they operate so that they can be modified by genetic engineering. Beginning in the 1990s, structural biology has provided a number of key insights. The emerging picture is one of remarkable dynamics and conformational programming in which the chemical states of individual catalytic domains are communicated to the others, configuring the modules for the next stage in the biosynthesis. This unexpected level of complexity most likely accounts for the low success rate of empirical genetic engineering experiments and suggests ways forward for productive megaenzyme synthetic biology. [ABSTRACT FROM AUTHOR]\r\nAB - Copyright of Nature Chemical Biology is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)\r\nKW - MOLECULAR structure of enzymes\r\nKW - POLYKETIDE synthases\r\nKW - NONRIBOSOMAL peptide synthetases\r\nKW - BIOSYNTHESIS\r\nKW - METHYLTRANSFERASES\r\nKW - GENETIC engineering\r\nKW - CATALYTIC domains\r\nKW - ENTEROBACTIN\r\nN1 - Accession Number: 108974507; Weissman, Kira J 1; Affiliation: 1: UMR 7365, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), CNRS-Université de Lorraine, Biopôle de l'Université de Lorraine, Campus Biologie Santé, Vandœuvre-lès-Nancy, France.; Source Info: Sep2015, Vol. 11 Issue 9, p660; Subject Term: MOLECULAR structure of enzymes; Subject Term: POLYKETIDE synthases; Subject Term: NONRIBOSOMAL peptide synthetases; Subject Term: BIOSYNTHESIS; Subject Term: METHYLTRANSFERASES; Subject Term: GENETIC engineering; Subject Term: CATALYTIC domains; Subject Term: ENTEROBACTIN; Number of Pages: 11p; Illustrations: 8 Color Photographs; Document Type: Article\r\nL3 - 10.1038/nchembio.1883\r\nDP - EBSCOhost\r\nDB - asn\r\nER - \r\n"}]>
How do I retrieve just the citation export format or styles for a particular Record Id or list of Ids?
Use the get_citation_exports
and get_citation_styles
methods to get information for one Record:
ris_export = session.get_citation_exports({dbid: 'asn', an: '108974507', format: 'ris'})
=> #<EBSCO::EDS::Citations:0x00007fd95d9cead0 @eds_database_id="asn", @eds_accession_number="108974507", @eds_record_id="asn__108974507", @items=[{"id"=>"RIS", "label"=>"RIS Format", "data"=>"TY - JOUR\r\nAU - Weissman, Kira J\r\nT1 - The structural biology of biosynthetic megaenzymes.\r\nJO - Nature Chemical Biology\r\nJF - Nature Chemical Biology\r\nY1 - 2015/09//\r\nVL - 11\r\nIS - 9\r\nM3 - Article\r\nSP - 660\r\nEP - 670\r\nPB - Springer Nature\r\nSN - 15524450\r\nAB - The modular polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) are among the largest and most complicated enzymes in nature. In these biosynthetic systems, independently folding protein domains, which are organized into units called 'modules', operate in assembly-line fashion to construct polymeric chains and tailor their functionalities. Products of PKSs and NRPSs include a number of blockbuster medicines, and this has motivated researchers to understand how they operate so that they can be modified by genetic engineering. Beginning in the 1990s, structural biology has provided a number of key insights. The emerging picture is one of remarkable dynamics and conformational programming in which the chemical states of individual catalytic domains are communicated to the others, configuring the modules for the next stage in the biosynthesis. This unexpected level of complexity most likely accounts for the low success rate of empirical genetic engineering experiments and suggests ways forward for productive megaenzyme synthetic biology. [ABSTRACT FROM AUTHOR]\r\nAB - Copyright of Nature Chemical Biology is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)\r\nKW - MOLECULAR structure of enzymes\r\nKW - POLYKETIDE synthases\r\nKW - NONRIBOSOMAL peptide synthetases\r\nKW - BIOSYNTHESIS\r\nKW - METHYLTRANSFERASES\r\nKW - GENETIC engineering\r\nKW - CATALYTIC domains\r\nKW - ENTEROBACTIN\r\nN1 - Accession Number: 108974507; Weissman, Kira J 1; Affiliation: 1: UMR 7365, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), CNRS-Université de Lorraine, Biopôle de l'Université de Lorraine, Campus Biologie Santé, Vandœuvre-lès-Nancy, France.; Source Info: Sep2015, Vol. 11 Issue 9, p660; Subject Term: MOLECULAR structure of enzymes; Subject Term: POLYKETIDE synthases; Subject Term: NONRIBOSOMAL peptide synthetases; Subject Term: BIOSYNTHESIS; Subject Term: METHYLTRANSFERASES; Subject Term: GENETIC engineering; Subject Term: CATALYTIC domains; Subject Term: ENTEROBACTIN; Number of Pages: 11p; Illustrations: 8 Color Photographs; Document Type: Article\r\nL3 - 10.1038/nchembio.1883\r\nDP - EBSCOhost\r\nDB - asn\r\nER - \r\n"}]>
irb(main):020:0>
list_of_styles = session.get_citation_styles({dbid: 'asn', an: '108974507', format: 'mla,apa'})
=> #<EBSCO::EDS::Citations:0x00007fd95b90a650 @eds_database_id="asn", @eds_accession_number="108974507", @eds_record_id="asn__108974507", @items=[{"id"=>"mla", "label"=>"MLA", "data"=>"Weissman, Kira J. “The Structural Biology of Biosynthetic Megaenzymes.” <i>Nature Chemical Biology</i>, vol. 11, no. 9, Sept. 2015, pp. 660–670. <i>EBSCOhost</i>, doi:10.1038/nchembio.1883.", "caption"=>"Modern Language Assoc.", "section_label"=>"Works Cited"}, {"id"=>"apa", "label"=>"APA", "data"=>"Weissman, K. J. (2015). The structural biology of biosynthetic megaenzymes. <i>Nature Chemical Biology</i>, <i>11</i>(9), 660–670. https://doi.org/10.1038/nchembio.1883", "caption"=>"American Psychological Assoc.", "section_label"=>"References"}]>
irb(main):021:0>
For a list of Record Ids, use the get_citation_styles_list
and get_citation_exports_list
methods:
citation_styles = session.get_citation_styles_list(id_list: ['asn__108974507', 'cat02060a__d.uga.3690122'])
=> [#<EBSCO::EDS::Citations:0x00007fd95da2e958 @eds_database_id="asn", @eds_accession_number="108974507", @eds_record_id="asn__108974507", @items=[{"id"=>"abnt", "label"=>"ABNT", "data"=>"WEISSMAN, K. J. The structural biology of biosynthetic megaenzymes. <b>Nature Chemical Biology</b>, set. 2015. v. 11, n. 9, p. 660–670. Disponível em: <http://search.ebscohost.com/#.aspx?direct=true&site=eds-live&db=asn&AN=108974507>. Acesso em: 26 set. 2018. ", "caption"=>"Brazilian National Standards", "section_label"=>"References"}, {"id"=>"ama", "label"=>"AMA", "data"=>"Weissman KJ. The structural biology of biosynthetic megaenzymes. <i>Nature Chemical Biology</i>. 2015;11(9):660-670. doi:10.1038/nchembio.1883.", "caption"=>"American Medical Assoc.", "section_label"=>"Reference List"}, {"id"=>"apa", "label"=>"APA", "data"=>"Weissman, K. J. (2015). The structural biology of biosynthetic megaenzymes. <i>Nature Chemical Biology</i>, <i>11</i>(9), 660–670. https://doi.org/10.1038/nchembio.1883", "caption"=>"American Psychological Assoc.", "section_label"=>"References"}, {"id"=>"chicago", "label"=>"Chicago/Turabian: Author-Date", "data"=>"Weissman, Kira J. 2015. “The Structural Biology of Biosynthetic Megaenzymes.” <i>Nature Chemical Biology</i> 11 (9): 660–70. doi:10.1038/nchembio.1883.", "section_label"=>"Reference List"}, {"id"=>"harvard", "label"=>"Harvard", "data"=>"Weissman, K. J. (2015) ‘The structural biology of biosynthetic megaenzymes’, <i>Nature Chemical Biology</i>, 11(9), pp. 660–670. doi: 10.1038/nchembio.1883.", "section_label"=>"References"}, {"id"=>"harvardaustralian", "label"=>"Harvard: Australian", "data"=>"Weissman, KJ 2015, ‘The structural biology of biosynthetic megaenzymes’, <i>Nature Chemical Biology</i>, vol. 11, no. 9, pp. 660–670, viewed 26 September 2018, <http://search.ebscohost.com/#.aspx?direct=true&site=eds-live&db=asn&AN=108974507>.", "section_label"=>"References"}, {"id"=>"mla", "label"=>"MLA", "data"=>"Weissman, Kira J. “The Structural Biology of Biosynthetic Megaenzymes.” <i>Nature Chemical Biology</i>, vol. 11, no. 9, Sept. 2015, pp. 660–670. <i>EBSCOhost</i>, doi:10.1038/nchembio.1883.", "caption"=>"Modern Language Assoc.", "section_label"=>"Works Cited"}, {"id"=>"turabian", "label"=>"Chicago/Turabian: Humanities", "data"=>"Weissman, Kira J. “The Structural Biology of Biosynthetic Megaenzymes.” <i>Nature Chemical Biology</i> 11, no. 9 (September 2015): 660–70. doi:10.1038/nchembio.1883.", "section_label"=>"Bibliography"}, {"id"=>"vancouver", "label"=>"Vancouver/ICMJE", "data"=>"Weissman KJ. The structural biology of biosynthetic megaenzymes. Nature Chemical Biology [Internet]. 2015 Sep [cited 2018 Sep 26];11(9):660–70. Available from: http://search.ebscohost.com/#.aspx?direct=true&site=eds-live&db=asn&AN=108974507", "section_label"=>"References"}]>, #<EBSCO::EDS::Citations:0x00007fd95cec7650 @eds_database_id="cat02060a", @eds_accession_number="d.uga.3690122", @eds_record_id="cat02060a__d.uga.3690122", @items=[{"id"=>"abnt", "label"=>"ABNT", "data"=>"ROWLING, J. K.; GRANDPRÉ, M. <b>Harry Potter and the sorcerer’s stone</b>. [S.l.]: New York : Scholastic, [1999], 1999. ", "caption"=>"Brazilian National Standards", "section_label"=>"References"}, {"id"=>"ama", "label"=>"AMA", "data"=>"Rowling JK, GrandPré M. <i>Harry Potter and the Sorcerer’s Stone</i>. New York : Scholastic, [1999]; 1999. http://search.ebscohost.com/#.aspx?direct=true&site=eds-live&db=cat02060a&AN=d.uga.3690122. Accessed September 26, 2018.", "caption"=>"American Medical Assoc.", "section_label"=>"Reference List"}, {"id"=>"apa", "label"=>"APA", "data"=>"Rowling, J. K., & GrandPré, M. (1999). <i>Harry Potter and the sorcerer’s stone</i>. New York : Scholastic, [1999]. Retrieved from http://search.ebscohost.com/#.aspx?direct=true&site=eds-live&db=cat02060a&AN=d.uga.3690122", "caption"=>"American Psychological Assoc.", "section_label"=>"References"}, {"id"=>"chicago", "label"=>"Chicago/Turabian: Author-Date", "data"=>"Rowling, J. K., and Mary GrandPré. 1999. <i>Harry Potter and the Sorcerer’s Stone</i>. New York : Scholastic, [1999]. http://search.ebscohost.com/#.aspx?direct=true&site=eds-live&db=cat02060a&AN=d.uga.3690122.", "section_label"=>"Reference List"}, {"id"=>"harvard", "label"=>"Harvard", "data"=>"Rowling, J. K. and GrandPré, M. (1999) <i>Harry Potter and the sorcerer’s stone</i>. New York : Scholastic, [1999]. Available at: http://search.ebscohost.com/#.aspx?direct=true&site=eds-live&db=cat02060a&AN=d.uga.3690122 (Accessed: 26 September 2018).", "section_label"=>"References"}, {"id"=>"harvardaustralian", "label"=>"Harvard: Australian", "data"=>"Rowling, JK & GrandPré, M 1999, <i>Harry Potter and the sorcerer’s stone</i>, New York : Scholastic, [1999], viewed 26 September 2018, <http://search.ebscohost.com/#.aspx?direct=true&site=eds-live&db=cat02060a&AN=d.uga.3690122>.", "section_label"=>"References"}, {"id"=>"mla", "label"=>"MLA", "data"=>"Rowling, J. K., and Mary GrandPré. <i>Harry Potter and the Sorcerer’s Stone</i>. New York : Scholastic, [1999], 1999. <i>EBSCOhost</i>, search.ebscohost.com/#.aspx?direct=true&site=eds-live&db=cat02060a&AN=d.uga.3690122.", "caption"=>"Modern Language Assoc.", "section_label"=>"Works Cited"}, {"id"=>"turabian", "label"=>"Chicago/Turabian: Humanities", "data"=>"Rowling, J. K., and Mary GrandPré. <i>Harry Potter and the Sorcerer’s Stone</i>. New York : Scholastic, [1999], 1999. http://search.ebscohost.com/#.aspx?direct=true&site=eds-live&db=cat02060a&AN=d.uga.3690122.", "section_label"=>"Bibliography"}, {"id"=>"vancouver", "label"=>"Vancouver/ICMJE", "data"=>"Rowling JK, GrandPré M. Harry Potter and the sorcerer’s stone [Internet]. New York : Scholastic, [1999]; 1999 [cited 2018 Sep 26]. Available from: http://search.ebscohost.com/#.aspx?direct=true&site=eds-live&db=cat02060a&AN=d.uga.3690122", "section_label"=>"References"}]>]
citation_exports = session.get_citation_exports_list(id_list: ['asn__108974507', 'cat02060a__d.uga.3690122'])
=> [#<EBSCO::EDS::Citations:0x00007fd95ceea038 @eds_database_id="asn", @eds_accession_number="108974507", @eds_record_id="asn__108974507", @items=[{"id"=>"RIS", "label"=>"RIS Format", "data"=>"TY - JOUR\r\nAU - Weissman, Kira J\r\nT1 - The structural biology of biosynthetic megaenzymes.\r\nJO - Nature Chemical Biology\r\nJF - Nature Chemical Biology\r\nY1 - 2015/09//\r\nVL - 11\r\nIS - 9\r\nM3 - Article\r\nSP - 660\r\nEP - 670\r\nPB - Springer Nature\r\nSN - 15524450\r\nAB - The modular polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) are among the largest and most complicated enzymes in nature. In these biosynthetic systems, independently folding protein domains, which are organized into units called 'modules', operate in assembly-line fashion to construct polymeric chains and tailor their functionalities. Products of PKSs and NRPSs include a number of blockbuster medicines, and this has motivated researchers to understand how they operate so that they can be modified by genetic engineering. Beginning in the 1990s, structural biology has provided a number of key insights. The emerging picture is one of remarkable dynamics and conformational programming in which the chemical states of individual catalytic domains are communicated to the others, configuring the modules for the next stage in the biosynthesis. This unexpected level of complexity most likely accounts for the low success rate of empirical genetic engineering experiments and suggests ways forward for productive megaenzyme synthetic biology. [ABSTRACT FROM AUTHOR]\r\nAB - Copyright of Nature Chemical Biology is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)\r\nKW - MOLECULAR structure of enzymes\r\nKW - POLYKETIDE synthases\r\nKW - NONRIBOSOMAL peptide synthetases\r\nKW - BIOSYNTHESIS\r\nKW - METHYLTRANSFERASES\r\nKW - GENETIC engineering\r\nKW - CATALYTIC domains\r\nKW - ENTEROBACTIN\r\nN1 - Accession Number: 108974507; Weissman, Kira J 1; Affiliation: 1: UMR 7365, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), CNRS-Université de Lorraine, Biopôle de l'Université de Lorraine, Campus Biologie Santé, Vandœuvre-lès-Nancy, France.; Source Info: Sep2015, Vol. 11 Issue 9, p660; Subject Term: MOLECULAR structure of enzymes; Subject Term: POLYKETIDE synthases; Subject Term: NONRIBOSOMAL peptide synthetases; Subject Term: BIOSYNTHESIS; Subject Term: METHYLTRANSFERASES; Subject Term: GENETIC engineering; Subject Term: CATALYTIC domains; Subject Term: ENTEROBACTIN; Number of Pages: 11p; Illustrations: 8 Color Photographs; Document Type: Article\r\nL3 - 10.1038/nchembio.1883\r\nDP - EBSCOhost\r\nDB - asn\r\nER - \r\n"}]>, #<EBSCO::EDS::Citations:0x00007fd95c859e80 @eds_database_id="cat02060a", @eds_accession_number="d.uga.3690122", @eds_record_id="cat02060a__d.uga.3690122", @items=[{"id"=>"RIS", "label"=>"RIS Format", "data"=>"TY - Book\r\nID - d.uga.3690122\r\nAU - Rowling, J. K.\r\nAU - GrandPré, Mary\r\nT1 - Harry Potter and the sorcerer's stone.\r\nY1 - 1999///\r\nM3 - Fiction\r\nPB - New York : Scholastic, [1999]\r\nAV - Main 3rd floor PR6068 .O934 H35 1999\r\nSN - 059035342X\r\nSN - 9780590353427\r\nN2 - Summary: Rescued from the outrageous neglect of his aunt and uncle, a young boy with a great destiny proves his worth while attending Hogwarts School for Wizards and Witches.\r\nKW - Witches -- Fiction\r\nKW - Wizards -- Fiction\r\nKW - Magic -- Fiction\r\nKW - Schools -- Fiction\r\nKW - Fantasy\r\nKW - Hogwarts School of Witchcraft and Wizardry (Imaginary organization) -- Juvenile fiction\r\nKW - Witches -- Juvenile fiction\r\nKW - Wizards -- Juvenile fiction\r\nKW - Magic -- Juvenile fiction\r\nKW - Schools -- Juvenile fiction\r\nKW - Fantasy fiction\r\nKW - England -- Fiction\r\nKW - England -- Juvenile fiction\r\nKW - Potter, Harry (Fictitious character) -- Fiction\r\nKW - Potter, Harry (Fictitious character) -- Juvenile fiction\r\nN1 - Accession Number: d.uga.3690122; Other Notes: \"First Scholastic trade paperback printing, September 1999\"--T.p. verso.; Originally published: 1st American ed. New York : A.A. Levine Books, 1998.; \"Year 1\"--Spine.; Sequel: Harry Potter and the Chamber of Secrets.; Publication Type: Book; Physical Description: vi, 309 p. : ill. ; 20 cm.; Language: English; Other Titles: Harry Potter and the philosopher's stone; OCLC: ocm42354631\r\nDP - EBSCOhost\r\nDB - cat02060a\r\nER - \r\n"}]>]
Note: in this method, the Record IDs are specified by concatenating the database ID to the Accession Numbers with a double underscore between them.
Yes, when you convert a Record via to_solr
you will find it in the eds_citation_exports
and eds_citation_styles
fields:
{
"responseHeader":{
"status":0
},
"response":{
"numFound":1,
"start":0,
"docs":[
{
"eds_result_id":1,
"eds_plink":"http://search.ebscohost.com/#.aspx?direct=true&site=eds-live&db=asn&AN=108974507",
"eds_accession_number":"108974507",
"eds_database_id":"asn",
"eds_database_name":"Academic Search Ultimate",
"eds_access_level":null,
"eds_relevancy_score":null,
"id":"asn__108974507",
"eds_title":"The structural biology of biosynthetic megaenzymes.",
"eds_source_title":"Nature Chemical Biology",
"eds_composed_title":"<searchLink fieldCode="JN" term="%22Nature+Chemical+Biology%22">Nature Chemical Biology</searchLink>. Sep2015, Vol. 11 Issue 9, p660-670. 11p. 8 Color Photographs.",
"eds_other_titles":null,
"eds_abstract":"The modular polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) are among the largest and most complicated enzymes in nature. In these biosynthetic systems, independently folding protein domains, which are organized into units called 'modules', operate in assembly-line fashion to construct polymeric chains and tailor their functionalities. Products of PKSs and NRPSs include a number of blockbuster medicines, and this has motivated researchers to understand how they operate so that they can be modified by genetic engineering. Beginning in the 1990s, structural biology has provided a number of key insights. The emerging picture is one of remarkable dynamics and conformational programming in which the chemical states of individual catalytic domains are communicated to the others, configuring the modules for the next stage in the biosynthesis. This unexpected level of complexity most likely accounts for the low success rate of empirical genetic engineering experiments and suggests ways forward for productive megaenzyme synthetic biology. [ABSTRACT FROM AUTHOR]",
"eds_authors":[
"Weissman, Kira J"
],
...
"eds_citation_exports":[
{
"id":"RIS",
"label":"RIS Format",
"data":"TY - JOUR\r\nAU - Weissman, Kira J\r\nT1 - The structural biology of biosynthetic megaenzymes.\r\nJO - Nature Chemical Biology\r\nJF - Nature Chemical Biology\r\nY1 - 2015/09//\r\nVL - 11\r\nIS - 9\r\nM3 - Article\r\nSP - 660\r\nEP - 670\r\nPB - Springer Nature\r\nSN - 15524450\r\nAB - The modular polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) are among the largest and most complicated enzymes in nature. In these biosynthetic systems, independently folding protein domains, which are organized into units called 'modules', operate in assembly-line fashion to construct polymeric chains and tailor their functionalities. Products of PKSs and NRPSs include a number of blockbuster medicines, and this has motivated researchers to understand how they operate so that they can be modified by genetic engineering. Beginning in the 1990s, structural biology has provided a number of key insights. The emerging picture is one of remarkable dynamics and conformational programming in which the chemical states of individual catalytic domains are communicated to the others, configuring the modules for the next stage in the biosynthesis. This unexpected level of complexity most likely accounts for the low success rate of empirical genetic engineering experiments and suggests ways forward for productive megaenzyme synthetic biology. [ABSTRACT FROM AUTHOR]\r\nAB - Copyright of Nature Chemical Biology is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)\r\nKW - MOLECULAR structure of enzymes\r\nKW - POLYKETIDE synthases\r\nKW - NONRIBOSOMAL peptide synthetases\r\nKW - BIOSYNTHESIS\r\nKW - METHYLTRANSFERASES\r\nKW - GENETIC engineering\r\nKW - CATALYTIC domains\r\nKW - ENTEROBACTIN\r\nN1 - Accession Number: 108974507; Weissman, Kira J 1; Affiliation: 1: UMR 7365, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), CNRS-Université de Lorraine, Biopôle de l'Université de Lorraine, Campus Biologie Santé, Vandœuvre-lès-Nancy, France.; Source Info: Sep2015, Vol. 11 Issue 9, p660; Subject Term: MOLECULAR structure of enzymes; Subject Term: POLYKETIDE synthases; Subject Term: NONRIBOSOMAL peptide synthetases; Subject Term: BIOSYNTHESIS; Subject Term: METHYLTRANSFERASES; Subject Term: GENETIC engineering; Subject Term: CATALYTIC domains; Subject Term: ENTEROBACTIN; Number of Pages: 11p; Illustrations: 8 Color Photographs; Document Type: Article\r\nL3 - 10.1038/nchembio.1883\r\nDP - EBSCOhost\r\nDB - asn\r\nER - \r\n"
}
],
"eds_citation_styles":[
{
"id":"mla",
"label":"MLA",
"data":"Weissman, Kira J. “The Structural Biology of Biosynthetic Megaenzymes.” <i>Nature Chemical Biology</i>, vol. 11, no. 9, Sept. 2015, pp. 660–670. <i>EBSCOhost</i>, doi:10.1038/nchembio.1883.",
"caption":"Modern Language Assoc.",
"section_label":"Works Cited"
},
{
"id":"apa",
"label":"APA",
"data":"Weissman, K. J. (2015). The structural biology of biosynthetic megaenzymes. <i>Nature Chemical Biology</i>, <i>11</i>(9), 660–670. https://doi.org/10.1038/nchembio.1883",
"caption":"American Psychological Assoc.",
"section_label":"References"
}
]
}
]
}
}