Note: Starting with version 1.x, RLLM has become a simple wrapper around llm. Both crates will be actively maintained and kept in sync. If you are new to this ecosystem, you can use either llm directly or rllm - they provide the same features.
RLLM is a Rust library that lets you use multiple LLM backends in a single project: OpenAI, Anthropic (Claude), Ollama, DeepSeek, xAI, Phind, Groq and Google. With a unified API and builder style - similar to the Stripe experience - you can easily create chat or text completion requests without multiplying structures and crates.
Base crate is : LLM
- Multi-backend: Manage OpenAI, Anthropic, Ollama, DeepSeek, xAI, Phind, Groq and Google through a single entry point.
- Multi-step chains: Create multi-step chains with different backends at each step.
- Templates: Use templates to create complex prompts with variables.
- Builder pattern: Configure your LLM (model, temperature, max_tokens, timeouts...) with a few simple calls.
- Chat & Completions: Two unified traits (
ChatProvider
andCompletionProvider
) to cover most use cases. - Extensible: Easily add new backends.
- Rust-friendly: Designed with clear traits, unified error handling, and conditional compilation via features.
- Validation: Add validation to your requests to ensure the output is what you expect.
- Evaluation: Add evaluation to your requests to score the output of LLMs.
- Parallel Evaluation: Evaluate multiple LLM providers in parallel and select the best response based on scoring functions.
- Function calling: Add function calling to your requests to use tools in your LLMs.
- REST API: Serve any LLM backend as a REST API with openai standard format.
- Vision: Add vision to your requests to use images in your LLMs.
- Reasoning: Add reasoning to your requests to use reasoning in your LLMs.
- Structured Output: Request structured output from certain LLM providers based on a provided JSON schema.
- Speech to text: Transcribe audio to text
Go to LLM Examples