- Clone this repository and navigate to LITE folder.
git clone https://github.com/hrlics/LITE.git
cd LITE
- Install packages.
conda create -n LITE python=3.10 -y
conda activate LITE
pip install -r requirements.txt
- Save the environmental data in the format of Hugging Face Datasets. Suppose it is tabular data, with N features and 1 target variable.
- Construct temporal trend images.
python draw_temporal_image.py \
--feature_path path/to/your/raw/features \
--target_path path/to/your/raw/targets \
--dataset_path path/to/the/huggingface_datasets \
--dataset_name name/of/the_parent_dir/of/huggingface_datasets \
--len_look_back look_back_window_size (default:30)
- The training code is at
./train.py
. - The relevant script can be found at
scripts/train_{dataset_name}.sh
.
sh ./scripts/train_{dataset_name}.sh
If you find our work useful, please consider citing:
@article{li2024lite,
title={LITE: Modeling Environmental Ecosystems with Multimodal Large Language Models},
author={Li, Haoran and Liu, Junqi and Wang, Zexian and Luo, Shiyuan and Jia, Xiaowei and Yao, Huaxiu},
journal={arXiv preprint arXiv:2404.01165},
year={2024}
}