Skip to content

Implement predict_proba as per #138 #211

New issue

Have a question about this project? # for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “#”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? # to your account

Closed
wants to merge 16 commits into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
97 changes: 97 additions & 0 deletions src/ensemble/random_forest_classifier.rs
Original file line number Diff line number Diff line change
Expand Up @@ -580,6 +580,37 @@ impl<TX: FloatNumber + PartialOrd, TY: Number + Ord, X: Array2<TX>, Y: Array1<TY
which_max(&result)
}

/// Predict the per-class probabilties for each observation.
/// The probability is calculated as the fraction of trees that predicted a given class
pub fn predict_proba<R: Array2<f64>>(&self, x: &X) -> Result<R, Failed> {
let mut result: R = R::zeros(x.shape().0, self.classes.as_ref().unwrap().len());

let (n, _) = x.shape();

for i in 0..n {
let row_probs = self.predict_proba_for_row(x, i);

for (j, item) in row_probs.iter().enumerate() {
result.set((i, j), *item);
}
}

Ok(result)
}

fn predict_proba_for_row(&self, x: &X, row: usize) -> Vec<f64> {
let mut result = vec![0; self.classes.as_ref().unwrap().len()];

for tree in self.trees.as_ref().unwrap().iter() {
result[tree.predict_for_row(x, row)] += 1;
}

result
.iter()
.map(|n| *n as f64 / self.trees.as_ref().unwrap().len() as f64)
.collect()
}

fn sample_with_replacement(y: &[usize], num_classes: usize, rng: &mut impl Rng) -> Vec<usize> {
let class_weight = vec![1.; num_classes];
let nrows = y.len();
Expand Down Expand Up @@ -607,6 +638,7 @@ impl<TX: FloatNumber + PartialOrd, TY: Number + Ord, X: Array2<TX>, Y: Array1<TY
#[cfg(test)]
mod tests {
use super::*;
use crate::linalg::basic::arrays::Array;
use crate::linalg::basic::matrix::DenseMatrix;
use crate::metrics::*;

Expand Down Expand Up @@ -799,4 +831,69 @@ mod tests {

assert_eq!(forest, deserialized_forest);
}

#[cfg_attr(target_arch = "wasm32", wasm_bindgen_test::wasm_bindgen_test)]
#[test]
fn fit_predict_probabilities() {
let x = DenseMatrix::<f64>::from_2d_array(&[
&[5.1, 3.5, 1.4, 0.2],
&[4.9, 3.0, 1.4, 0.2],
&[4.7, 3.2, 1.3, 0.2],
&[4.6, 3.1, 1.5, 0.2],
&[5.0, 3.6, 1.4, 0.2],
&[5.4, 3.9, 1.7, 0.4],
&[4.6, 3.4, 1.4, 0.3],
&[5.0, 3.4, 1.5, 0.2],
&[4.4, 2.9, 1.4, 0.2],
&[4.9, 3.1, 1.5, 0.1],
&[7.0, 3.2, 4.7, 1.4],
&[6.4, 3.2, 4.5, 1.5],
&[6.9, 3.1, 4.9, 1.5],
&[5.5, 2.3, 4.0, 1.3],
&[6.5, 2.8, 4.6, 1.5],
&[5.7, 2.8, 4.5, 1.3],
&[6.3, 3.3, 4.7, 1.6],
&[4.9, 2.4, 3.3, 1.0],
&[6.6, 2.9, 4.6, 1.3],
&[5.2, 2.7, 3.9, 1.4],
]);
let y = vec![0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1];

let classifier = RandomForestClassifier::fit(
&x,
&y,
RandomForestClassifierParameters {
criterion: SplitCriterion::Gini,
max_depth: None,
min_samples_leaf: 1,
min_samples_split: 2,
n_trees: 100, // this is n_estimators in sklearn
m: Option::None,
keep_samples: false,
seed: 0,
},
)
.unwrap();

println!("{:?}", classifier.classes);

let results: DenseMatrix<f64> = classifier.predict_proba(&x).unwrap();
println!("{:?}", x.shape());
println!("{:?}", results);
println!("{:?}", results.shape());

assert_eq!(
results,
DenseMatrix::<f64>::new(
20,
2,
vec![
1.0, 0.0, 0.78, 0.22, 0.95, 0.05, 0.82, 0.18, 1.0, 0.0, 0.92, 0.08, 0.99, 0.01,
0.96, 0.04, 0.36, 0.64, 0.33, 0.67, 0.02, 0.98, 0.02, 0.98, 0.0, 1.0, 0.0, 1.0,
0.0, 1.0, 0.0, 1.0, 0.03, 0.97, 0.05, 0.95, 0.0, 1.0, 0.02, 0.98
],
true
)
);
}
}