About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Calculate the variance of an array using a one-pass algorithm proposed by Youngs and Cramer.
The population variance of a finite size population of size N
is given by
where the population mean is given by
Often in the analysis of data, the true population variance is not known a priori and must be estimated from a sample drawn from the population distribution. If one attempts to use the formula for the population variance, the result is biased and yields a biased sample variance. To compute an unbiased sample variance for a sample of size n
,
where the sample mean is given by
The use of the term n-1
is commonly referred to as Bessel's correction. Note, however, that applying Bessel's correction can increase the mean squared error between the sample variance and population variance. Depending on the characteristics of the population distribution, other correction factors (e.g., n-1.5
, n+1
, etc) can yield better estimators.
npm install @stdlib/stats-array-varianceyc
Alternatively,
- To load the package in a website via a
script
tag without installation and bundlers, use the ES Module available on theesm
branch (see README). - If you are using Deno, visit the
deno
branch (see README for usage intructions). - For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the
umd
branch (see README).
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
var varianceyc = require( '@stdlib/stats-array-varianceyc' );
Computes the variance of an array.
var x = [ 1.0, -2.0, 2.0 ];
var v = varianceyc( x );
// returns ~4.3333
The function has the following parameters:
- x: input array.
- correction: degrees of freedom adjustment. Setting this parameter to a value other than
0
has the effect of adjusting the divisor during the calculation of the variance according toN-c
whereN
corresponds to the number of array elements andc
corresponds to the provided degrees of freedom adjustment. When computing the variance of a population, setting this parameter to0
is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the unbiased sample variance, setting this parameter to1
is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction). Default:1.0
.
By default, the function computes the sample variance. To use adjust the degrees of freedom when computing the variance, provide a correction
argument.
var x = [ 1.0, -2.0, 2.0 ];
var v = varianceyc( x, 0.0 );
// returns ~2.8889
- If provided an empty array, the function returns
NaN
. - If provided a
correction
argument which is greater than or equal to the number of elements in a provided input array, the function returnsNaN
. - The function supports array-like objects having getter and setter accessors for array element access (e.g.,
@stdlib/array-base/accessor
).
var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var varianceyc = require( '@stdlib/stats-array-varianceyc' );
var x = discreteUniform( 10, -50, 50, {
'dtype': 'float64'
});
console.log( x );
var v = varianceyc( x );
console.log( v );
- Youngs, Edward A., and Elliot M. Cramer. 1971. "Some Results Relevant to Choice of Sum and Sum-of-Product Algorithms." Technometrics 13 (3): 657–65. doi:10.1080/00401706.1971.10488826.
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2025. The Stdlib Authors.